
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Approaching Safety for Parameterized
Systems via View Abstraction

Philip Offtermatt

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Approaching Safety for Parameterized
Systems via View Abstraction

Ein Ansatz zum Nachweis von
Sicherheitseigenschaften für parametrisierte

Systeme durch Zustandsabstraktion

Author: Philip Offtermatt
Supervisor: Univ.-Prof. Dr. Dr. h.c. Javier Esparza
Advisor: M.Sc. Christoph Welzel
Submission Date: 15.11.2019

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, .11.2019 Philip Offtermatt

Acknowledgments

I want to thank my advisor Christoph Welzel for his encouraging advice and all
the time we spent discussing problems and brainstorming solutions on many monday
afternoons.

Furthermore, I want to thank my supervisor Prof. Javier Esparza for stoking my
interest in theoretical computer science, and for the opportunity to work on this thesis.

Abstract

Parameterized systems are models for interactions between many participants or pro-
cesses. While there are infinitely many instances of the system, one for each number
of interaction partners, the problem of verifying such a system becomes possible to
tackle by viewing the system as a family of systems, parameterized by some variables.
In this thesis, we examine one method that is able to verify safety properties for such
infinite families. This method is called view abstraction, and it relies on an abstraction
function, which enables us to extract patterns, which we call views, from the states of the
system. These patterns are then used to compute an overapproximation of the reachable
states of the system, together with a so-called small model property. This property
means that small, fixed-size instances of the system exhibit all the patterns found in
all instances of the system. The accuracy of the overapproximation is determined by a
parameter, and when it becomes accurate enough, we can prove whether the system
is safe without examining the whole state space. We present our reimplementation of
this method. In two casestudies, we benchmark the new and original implementations,
and apply the method to population protocols, an established subclass of parameterized
systems. We examine how view abstraction can be used to compute a certain property
of population protocols that can help humans make less errors while designing them,
and showcase our prototype implementation of tool-assisted manual generation of
population protocols.

v

Contents

Acknowledgments iii

Abstract v

1. Introduction 1

2. Preliminaries 3
2.1. Multisets . 3
2.2. Words . 3
2.3. Regular Expressions . 4
2.4. Well-Quasi-Orderings . 5
2.5. Monotonicity . 7
2.6. Petri Nets . 7

3. Related Work 11

4. Parameterized Systems 13
4.1. Burns’ Mutual Exclusion Algorithm . 14
4.2. Formal Definition of Parameterized Systems 16
4.3. Reachability Problem in Parameterized Systems 18
4.4. View Abstraction . 19

4.4.1. Abstraction and Reconstruction . 21
4.4.2. Algorithm . 24
4.4.3. Rendez-vous Transitions . 31
4.4.4. Global Process Pointers . 32
4.4.5. Completeness for well-quasi-ordered systems 32

4.5. Implementation . 33
4.5.1. Extension . 34
4.5.2. Input Language . 36

5. Population Protocols 39
5.1. Definition . 39
5.2. Using population protocols for computation 41
5.3. Population Protocols and Petri Nets . 42

vii

Contents

6. Case Study 45
6.1. Interactive protocol generation . 45

6.1.1. Consensus Stability . 46
6.1.2. Checking Consensus Stability using View Abstraction 46
6.1.3. Prototype Implementation . 47

6.2. Benchmarks . 49

7. Conclusion 53

A. Mutual Exclusion Algorithms 55
A.1. Burns . 55
A.2. Dijkstra . 55
A.3. Bakery . 56

List of Figures 57

List of Tables 59

Bibliography 61

viii

1. Introduction

For many years, the number of computers and the interdependence between them has
steadily increased. New technological paradigms like the Internet of Things [TW10;
AIM10] are emerging. In these paradigms, not only humans but everyday objects like
lamps or cars are connected with each other. This means more and more participants
interact. One consequence of this development is that it is increasingly important
to ensure that algorithms that govern systems with many interaction partners are
thoroughly verified.

There are many examples of the fact that it is hard to write software that behaves as ex-
pected. For example, the crash of the Ariane 5 launcher in 1996 was due to an undetected
software bug [JM97], and there are many more similar examples of comparable scope.
Consequently, there is much literature dedicated to verifying programs and software, i.e.
via model checking [BK08; Vis+03]. Extending this to distributed programs means that
the problem becomes more complex. For example, the 2003 northeast blackout that left
large parts of the eastern United States and Canada without power for over ten days
was among other reasons the result of a software bug in a distributed system [And+05].

In this thesis, we focus on safety properties. This means we are given some initial and
some bad states. Then, the question we want to answer is: Can the system reach a bad
state when it starts at an initial state? Many interesting properties can be formulated as
such safety properties. For example, the mutual exclusion problem means that a certain
resource, for example write-access to a database entry, can only be used by one process
at a time. We can view this problem as a safety property by denoting as bad states all
those where two processes access the resource at the same time.

When we look at a system with only one process with finitely many states, we
can exhaustively perform a forward reachability search starting at its initial states to
determine whether the system can reach a bad state. However, when we are considering
parameterized systems with arbitrarily many interacting processes, there are infinitely
many instances of the system, one per number of processes.

Such a parameterized system can be viewed as a family of systems, characterized by
some parameters. For example, a system could be a model of a network, where there
is no bound on how many devices are part of the network, and the topology in which
the devices interact is not a priori known. The parameters might then be the device
number and the topology of the network. Naturally, for a fixed number of devices and
one fixed topology, the instance of the system for these parameters has finitely many
states. Still, exhaustive forward reachability over the system as a whole is bound to fail,
since there are infinitely many instances that need to be checked. Therefore, we need
other methods.

1

1. Introduction

One promising approach is to infer properties of the full system by looking at the
behaviour of instances for some fixed parameter value. In essence, we want to utilize a
so-called small model property: Small instances of the system suffice to explain behaviour
of all its instances.

This thesis is dedicated to studying a recently proposed method for parameterized
verification of safety properties called view abstraction, that is given by Abdulla et
al. in [AHH16]. It relies on an abstraction that maps larger instances of the system
into their smaller patterns. The method then uses the abstraction to construct an
overapproximation of the reachable configurations, thereby deriving an abstract state
space. If we can prove the abstract model to be safe then the original model must also
be safe, since that abstract state space is an overapproximation of the actual state space.

We present our implementation of the core part of the view abstraction algorithm.
The original paper contained evaluations of a prototype implementation, that is however
to our knowledge not made public under a license that allows reuse and modification.
We use our implementation to verify some results from [AHH16].

Additionally, we use view abstraction to verify properties of a type of parameterized
systems called population protocols, that were originally introduced by Angluin et
al. in [Ang+06]. Population protocols, and especially their verification, have recently
been examined in the literature. Additionally, view abstraction has not previously been
applied to them, even though they satisfy the criteria for applicability. We introduce the
consensus stability property, which is a property that can be helpful for humans to judge
correctness of population protocols and spot errors. In this context, we present our
implementation of a small prototype that provides capability for tool-assisted, manual
generation of population protocols, and utilizes view abstraction to compute consensus
stability and provide feedback to the user. It has recently been shown that automatically
generating population protocols can be done in polynomial time, but the resulting
protocols are very slow [Blo+19]. On the other hand, manual generation is prone to
errors, but humans can produce fast protocols. This prototype seeks to support humans
in this tedious task and can help them avoid errors.

The structure of the rest of this thesis is detailed in the following. Chapter 2 intro-
duces notation and concepts that are used throughout the thesis. Chapter 3 is dedicated
to presenting some other work in the area of parameterized systems and their veri-
fication. Chapter 4 introduces the view abstraction algorithm, as well as correctness
and completeness results, and follows the structure of [AHH16] closely. Chapter 5
introduces population protocols. Chapter 6 is dedicated to presenting our prototype
implementation for tool-assisted manual protocol generation and reproducing some of
the benchmark results from [AHH16]. Lastly, Chapter 7 draws conclusions and describes
opportunities for future work.

2

2. Preliminaries

In the following, N denotes the natural numbers including 0, while Q denotes the
rational numbers.

2.1. Multisets

A multiset is given by a mapping M : E → N, where E is its finite underlying set.
Intuitively, a multiset is a set that allows for multiple repetitions of the same element.
The semantics are as follows: For an element e ∈ E, M(e) denotes how often the element
occurs in M. We call M(e) the multiplicity of e in M. The support of a multiset M over a
set E is given by {e ∈ E|M(e) > 0}, denoted as [[M]].

The size of a multiset is given as the sum of the multiplicities of its elements, i.e.
∑e∈E M(e), denoted as ||M||. For two multisets M, M′, we define a subset relation: M
is a subset of M′ if for all m ∈ [[M]], it holds that m ∈ [[M′]] and M(m) ≤ M′(m).
Intuitively, M′ needs to contain at least all elements that M contains, and they need to
have at least the same (or greater) multiplicities.

We sometimes use the notation {|m1, m2, ...|} to denote a multiset containing the
elements m1, m2, ..., where the multiplicity of an element is how often the element
occurs.

We define some useful standard operations on multisets:

• For two multisets M and M′ over a set E, we define their union U = M ∪ M′

as follows: For all m ∈ E, if m ∈ [[M]] ∪ [[M′]], then U(m) = M(m) + M′(m),
otherwise U(m) = 0. Intuitively, we simply add together the multiplicities of all
elements of both multisets. For example, {|0, 1, 2|} ∪ {|0, 1, 3|} = {|0, 0, 1, 1, 2, 3|}.

• For two multisets M and M′ over a set E, we define the difference between M
and M′, denoted as U = M \M′, as follows: For all m ∈ E, if m ∈ [[M]], then it
holds that U(m) = max(M(m)−M′(m), 0), otherwise U(m) = 0. Intuitively, we
subtract the multiplicites of the elements in M′ from those in M. If this would
yield a negative multiplicity, we simply set the multiplicity of the element to 0.

2.2. Words

An alphabet is given as a potentially infinite set of elements. We call the elements of
an alphabet letters. A word over an alphabet A = {a1, a2, a3, ...} is given as a sequence

3

2. Preliminaries

w = w1w2w3...wn of letters of A. We sometimes use the notation w[i] to refer to the i-th
letter of w.

Note that in the context of this thesis, words consist only of a finite number of
letters. We call the number of letters in the sequence of a word w the length of w,
denoted by |w|. We denote the frequency of a letter l in w as |w|l , and formally define
|w|l = |{n ∈N|wn = l}|. The empty word is denoted by ε and has a length of 0.

In the following, we define two relations over words. Both relations describe that a
word is a subword of another word, but their semantics differ slightly.

For two words w = w1w2...wn, v = v1v2...vm we define the ordered subword relation v
as follows: w v v if there exist i1 < i2 < i3... < in s.t. w = vi1 vi2 vi3 ...vin . Intuitively, the
ordered subwords of a word are those that are derived by deleting some letters from it,
while keeping the other letters in the same order. For example, the non-empty subwords
of the word aba are {a, b, aa, ab, ba, aba}.

In contrast to the ordered subword relation, we define the permuted subword relation
E as follows: For two words w = w1w2...wn, v = v1v2...vm over an alphabet A, w E v if
and only if for all letters l ∈ A, |w|l ≤ |v|l . Intuitively, w is a permuted subword of v
if it can be constructed from v by leaving zero or more letters out, and reordering
the remaining letters. For example, the permuted subwords of the word aba are
{a, b, aa, ab, ba, aba, aab, baa}.

Next, to go along with the permuted subword relation, we also define what it means
for two words to be equal under permutation. We denote this relation as ∼. For two words
w = w1w2w3 . . . , v = v1v2v3 . . . over an alphabet A, w ∼ v if and only if for all letters
l ∈ A, |w|l = |v|l . Intuitively, w is equal to v under permutation if w can be constructed
from v by only reordering, not adding or removing, letters.

2.3. Regular Expressions

We define regular expressions as a way of reasoning about words. The following
definitions are adapted from [Nip+19]. For an alphabet A, we define the syntax of
regular expressions over A inductively:

• ∅ and ε are regular expressions,

• for all a ∈ A, a is a regular expression, and

• for two regular expressions α, β, then also

– α|β,

– αβ,

– α∗, and

– α+

are regular expressions.

4

2.4. Well-Quasi-Orderings

A regular expression defines a language L as follows:

• L(∅) = ∅,

• L(ε) = {ε},

• L(a) = {a},

• L(αβ) = L(α)L(β) (i.e. concatenate words from L(α) and L(β)),

• L(α|β) = L(α) ∪ L(β),

• L(α∗) = L(α)∗, and

• L(α+) = L(αα∗).

As an example, consider the alphabet A = {a, b}. The regular expression for all
possible words over the alphabet is given as (a|b)∗. As another example, consider
L((aa|b)(ab)∗) = {aaab, bab, aaabab, babab, . . . }.

2.4. Well-Quasi-Orderings

Well-quasi-orderings describe a useful subclass of relations. They have been studied ex-
tensively in the literature, and a short overview of their history and the basic definitions
can be found in [Kru72]. In the following, we introduce the definitions and notations as
they are used throughout this thesis.

Let 4⊆ Q × Q be a relation over elements of some potentially infinite set Q. For
a, b ∈ Q, if (a, b) ∈4, we can denote this fact alternatively as a 4 b. We define two
properties of relations:

• Reflexivity: 4 is reflexive if and only if for all x ∈ Q it holds that x 4 x.

• Transitivity: 4 is transitive if and only if for all x, y, z ∈ Q, it holds that if x 4 y
and y 4 z, then also x 4 z.

There are some examples for relations over the natural numbers N that fulfill neither,
one, or both of the properties. Consider for example the relation <. This relation
satsifies transitivity - if x < y and y < z, then naturally it must also hold that x < z. On
ther other hand, x < x never holds. On the other hand, the relation = on the natural
numbers satisfies both transitivity as well as reflexivity. Observe that x = x holds for
any natural number, and if x = y and y = z, then naturally, x = z must also hold. Note
that the same holds for the "less-or-equal" relation ≤. An example of a relation that
satisfies neither reflexivity nor transitivity is 6=. Reflexivitiy does not hold since x 6= x
does not hold for any natural number x. Transitivity does not hold either - consider the
case where we choose three numbers x, y, z such that x = z, but x 6= y and y 6= z. In
order for 6= to be transitive, x 6= z has to hold, but we chose numbers such that x = z,
therefore, 6= cannot be transitive.

A quasi-ordering is a tuple (Q,4), where

5

2. Preliminaries

• Q is a potentially infinite set of elements, and

• 4⊆ Q×Q is a reflexive and transitive relation over Q.

Some examples of quasi-orderings are given by the natural numbers under equality
(N,=), the natural numbers under "less-or-equal" (N,≤) or the rational numbers under
"less-or-equal" (Q,≤).

For two elements a, b ∈ Q, the pair (a, b) is called increasing if a 4 b, and it is called
strictly increasing if additionally b 4 a does not hold. We also say that a is smaller than
b with respect to 4. One can define decreasing, strictly decreasing and greater similarly.
The set of minimal elements of Q is defined as {b ∈ Q| There is no e ∈ Q such that e 4 b,
but not b 4 e}, i.e. there is no element e such that (e, q) is strictly increasing. The set
of maximal elements can be defined analogously. To illustrate the concepts of minimal
and maximal elements, we consider the previously given examples of quasi-orderings.
The quasi-order (N,=) has infinitely many minimal and maximal elements, since any
given element is not equal to any element except for itself. Therefore, every element
is minimal as well as maximal. If we replace = by ≤ and consider the case of (N,≤),
there exists no maximal element. Intuitively, the natural numbers do not have any upper
bound, and therefore no element can be maximal. However, there is a unique minimal
element, namely 0. If we consider the rational numbers instead of the natural numbers,
i.e. (Q,≤), no maximal or minimal elements exist - the rational numbers have neither
an upper bound nor a lower bound.

Given an arbitrary set S ⊆ Q, we can also identify minimal resp. maximal elements
of S by simply swapping Q for S in the definition: The set of minimal elements of S
is given as {b ∈ S| There is no e ∈ S such that e 4 b but not b 4 e}. We can similarly
define the set of maximal elements. For example, even though (Q,≤) has no minimal or

maximal elements, if we consider the set S = {1
1

,
1
2

,
1
3

, . . . }, we can identify the maximal
element 1, but there are still no minimal elements.

For a set S and a quasi-order (Q,4), we denote by ↑S the upward-closure of S, defined
as {q ∈ Q| There exists s ∈ S such that s 4 q}. The downward-closure can be defined
analogously as ↓S = {q ∈ Q| There exists s ∈ S such that q 4 s}. When S = ↓S (resp.
S = ↑S), we say that S is upward-closed (resp. downward-closed). As an example, consider
again the quasi-order (N,≤). An example of a set that is downward-closed, but not
upward-closed are intervals starting at 0, i.e. the set {0, 1, ..., n} is downward-closed for
every n. On the other hand, infinite intervals starting at some number n and containing
all larger numbers, e.g. the infinite set {n, n + 1, n + 2, ...}, are upward closed.

A quasi-order (Q,4) is called a well-quasi-order if every infinite sequence a0, a1, a2, ...
contains an infinite subsequence ai0 , ai1 , ai2 , ... with i0 < i1 < i2 < ... such that ai0 4
ai1 4 ai2 4 Another equivalent definition says that a quasi-order (Q,4) is a well-
quasi-order if for every P ⊆ Q there is a finite set of minimal elements P′ ⊆ P such that
P = ↑P′. Of the presented examples, only (N,≤) is a well-quasi-order. Intuitively, any
infinite sequence is not decreasing forever, since it reaches the minimal element 0 from
which it cannot decrease further, and therefore has to contain an infinite ascending

6

2.5. Monotonicity

subsequence. Note that since x ≤ x, this can also be an infinite sequence that consists
of the same element repeated infinitely often. The other two examples, namely (N,=)

and (Q,≤) are not well-quasi-orders. For (N,=), we consider as a counterexample
any infinite sequence of inequal elements, i.e. 0, 1, 2, ..., while for (Q,≤), we consider

the sequence
1
1

,
1
2

,
1
3

, ..., where every pair of two successive elements of the sequence is
strictly decreasing.

2.5. Monotonicity

We adapt the definitions of this section from [AHH16, Page 10].
Let S be a set. Then, for a well-quasi-order 4 and a relation R ⊆ S× S over elements

of S, we say that R is monotonic w.r.t. to 4 if for all s1, s2, s′1 ∈ S, if (s1, s2) ∈ R and
s1 4 s′1, then there exists s′2 ∈ S such that (s′1, s′2) ∈ R and s2 4 s′2.

Given a monotonic relation R ⊆ S× S w.r.t. to some well-quasi-order 4, and a set
A ⊆ S, we define the image of A under R as R(A) = {b| There exists a ∈ A such that
(a, b) ∈ R}. Then if it holds that R(A) ⊆ A, then R(↓A) ⊆ ↓A.

2.6. Petri Nets

Petri nets are a widespread model used to describe distributed systems, business
processes and chemical reactions. There is a large amount of literature concerned with
Petri nets and their properties. For a rather comprehensive introduction, see [Esp17]. In
the following, we present some of the definitions from this introduction, and describe
the notation that is used in the context of this thesis.

A Petri net is given by a tuple (S, T, F), where:

• S is a finite set of places,

• T is a finite set of transitions, and

• F ⊆ S× T ∪ T × S is a finite set of arcs.

In this thesis, we use standard Petri net notation, in which we illustrate places as
circles, transitions as boxes, and arcs as arrows between places and transitions.

For a given place or transition a ∈ S ∪ T, we denote by •a = {b|(b, a) ∈ F} the pre of a.
Similarly, we define the post of a as a• = {b|(a, b) ∈ F}. Intuitively, the pre of an element
are those elements that have an arc to it, while its post are the elements it has an arc to.

A marking is a multiset M over the set of places S, where for each place, its multiplicity
in the marking denotes how many tokens are in that place. If M(s) > 0, i.e. there is
atleast one token in s, we say that s is marked. Tokens flow through the net via transitions.
A transition t is enabled at marking M if all places in the pre of t are marked. We say

7

2. Preliminaries

p1 p2 p3

p4 p5

t1

t2

t3

Figure 2.1.: A Petri net where p1 and p5 are marked (represented by black tokens), and
where therefore transitions t1 and t2 are enabled. while transition t3 is
disabled. After firing transition t1, the resulting marking has one token in
p4 (represented by a red token), and no tokens anywhere else.

that transitions that are not enabled are disabled. From a marking M where a transition t
is enabled, we can derive a successor marking M′ by firing t such that for all s ∈ S:

M′(s) =

M(s)− 1 if s ∈ •t \ t•

M(s) + 1 if s ∈ t• \ •t
M(s) otherwise.

Intuitively, firing a transition takes one token out of each input place of the transition,
and puts one token into each output place of the transition. Additionally, no place can
have negative tokens, so transitions can only be fired when there is one token in each
input place. Note that a transition can have the same place as an input and as an output
place - this means the transition can only be fired when there is a token in the place,
but it is put back after the transition has been fired. Using the notation M t−→ M′, we
denote that M′ can be reached from M by firing t. If there exists a transition t such that
M t−→ M′, we can denote this fact without specifying the transition as M→ M′. We can
extend this notion to multi-step reachability: M n−→ M′ if there are M1, M2, M3, . . . , Mn−1

such that M → M1 → M2 → · · · → Mn → M′. We write M ∗−→ M′ to mean that there
exists n such that M n−→ M′. Note this means ∗−→ is the reflexive and transitive closure of
→.

As an example, we consider the Petri net given in Figure 2.1. We denote its markings
as vectors of the form (m1, m2, m3, m4, m5), where mi is the number of tokens in place
pi in the marking. The black tokens represent the marking (1, 0, 0, 0, 1), which means
that only transitions t1 and t2 are enabled. When transition t1 is fired, this leads to the
marking given by the red token, which can be represented as (0, 0, 0, 1, 0). From this
marking, no further transitions are enabled.

One extension of the main model consists of allowing arcs to have weights. We define
a Petri net with weights as a tuple (S, T, M), where

• S and T are defined as in the main model, while

8

2.6. Petri Nets

p1 p2 p3

p4 p5

t1

2

t2
2

3

t3

3

Figure 2.2.: A similar Petri net to the one presented in Figure 2.1, where some arcs
where modified to have weights. We simply denote the weight of an arc
by writing it next to it. Note that only transition t1 is enabled in the given
marking, which again has one token in p1 and one token in p5 (represented
by black tokens). After t1 is fired, the resulting marking has two tokens in
p4 (represented by red tokens), and no tokens anywhere else.

• the weight function W : (S× T) ∪ (T× S)→ N is a mapping from arcs to weights.

Note that we do not draw arcs with a weight of 0 in illustrations.
Intuitively, the weight of an arc denotes how many tokens flow along that arc when

it’s corresponding transition is fired. A transition t is then only enabled if every input
place has atleast as many tokens as the weight of the arc from that place to t, i.e. t is
enabled in a marking M if and only if for all s ∈ S, it holds that M(s) ≥ W(s, t). We
redefine the successor marking M′ obtained by firing a transition t at marking M as
follows:

For all states s ∈ S : M′(s) = M(s) + W(t, s)−W(s, t)

All other notions are defined as in the main model. As an example, we consider the
Petri net of Figure 2.2, which is the net from Figure 2.1, extended with arc weights.

9

3. Related Work

Parameterized systems and algorithms to verify their properties are widely investigated
in the literature. The view abstraction method covered in Chapter 4 is originally intro-
duced by Abdulla et al. in [AHH14]. Some additional clarification about the used model
and proposed algorithm can be found in [AHH16].

In [AHH14; AHH16], Abdulla et al. propose an extension of the view abstraction
method that deals with systems that do not satisfy all criteria of applicability of view
abstraction, mainly systems that do not allow good downward-closed invariants. They
extend the model using so-called contexts, where the smaller patterns that make up the
abstraction of a large instance of the system are extended with additional information
about the original system instance. In the context of this thesis, we do not need contexts,
as the systems that we want to analyze, i.e. population protocols, generally provide
these downward-closed invariants.

When one drops the assumption that the system is parameterized, there are many
methods that attempt to prove correctness of such systems, for example model checking
[BK08; Vis+03]. However, they usually require major adaptions to cope with parameter-
ized systems where the state space is infinite.

In the literature, many related classes of parameterized systems have been introduced,
with algorithms for the verification of safety properties for some of them, and we
mention some of these classes and how they relate to the class covered in this thesis in
the following.

In [Abd+96], a class of infinite-state systems called well-structured-systems is intro-
duced. They are closely related to the class of parameterized systems we study here. The
main condition for a system to be well-structured is that the transition relation is mono-
tonic, which means that the system does not necessarily need to model a distributed
system. The main difference lies in the fact that in this thesis, we restrict ourselves to
infinite-state systems that consist of the parallel execution of an arbitrary number of
processes that all run the same program. This means we can treat the system as a family
of systems parameterized by the number of processes, while well-structured-systems
do not have this restriction of uniformity. However, some of the proof details we use in
later chapters to prove that the view abstraction method is correct resemble closely the
observations made in [Abd+96] about this more general class.

A recent survey of the current state-of-the-art regarding the complexity of computing
safety properties for different types of parameterized systems is given in [Esp14]. There,
the systems are classified by their communication capabilities, and the classes defined
there are those with broadcast communication, global stores with locking, rendez-vous
communication and global stores without locking. In our case, the view abstraction

11

3. Related Work

method can handle systems that support both broadcast and rendez-vous transitions.
A related model for parameterized systems is used by Bozga et al. in [BIS19]. As in

the model used for view abstraction, the system is parameterized over the number of
processes, and processes perform parallel executions with the possibility of interactions
between processes. However, while in this thesis we only consider the case where all
processes are copies of each other and use the same transitions, the model by Bozga et al.
allows one to have different types of so-called components, which can be imagined as
different types of processes. Each type uses a different transition relation, and instead of
parameterizing over the total number of processes, there is one parameter per component
type. This allows for greater flexibility in systems that can be modelled.

A paradigm for verification of a related class of parameterized systems is used by
Bouajjani et al. in [Bou+00]. This paradigm is called regular model checking, and works
on infinite-state systes where the states are given as finite words over a finite alphabet.
The goal there is to compute the set of reachable states of the system and the transitive
reflexive closure of the transition relation. Therefore, the used model and the goal
are very close to the underlying model and goal of view abstraction. However, the
differences lie in the methodology and its limiations. In [Bou+00], two approaches are
presented.

The first approach is based on constructing the transitive closure of the transition
relation using techniques from automata theory. The limitation here is that the algorithm
is not guaranteed to terminate if the set R+, i.e. words generated by the repeated
concatentation of one or more words from R, is not regular.

The second approach uses a technique called widening, and is based on guessing the
result of repeated iteration of a given relation from a starting set. Here, the limitation is
that the procedure is only guaranteed to be exact for so-called simple relations.

12

4. Parameterized Systems

Parameterized systems are models for systems that can be viewed as a family of infinitely
many finite-state systems, characterized by one or more parameters. For every fixed
evaluation of the parameters, the system only has finitely many states, however, since
there are infinitely many values for the parameters, e.g. because they can take on all
values from the natural numbers, the family as a whole has infinitely many members.
An example for such a parameterized system is given by a utility that performs an
operation on entries in two tables of a database. Such a system could be modelled as
determined by two parameters, which denote the number of entries in the two tables of
the database respectively.

The infinite size of the state space makes automatic verification of such systems hard.
Verification in this context means that we want to verify wether the system satisfies
some correctness speficiation for all parameter evaluations. This means that techniques
like a full exploration of the state space of the system are impossible to use, and must
be adapted to cope with the infinitely many states.

In the context of this thesis, we focus on a subclass of parameterized systems, which
is introduced in [AHH16]. Systems in this subclass consist of many copies of identical
processes. The only parameter is the number of processes. These processes act in parallel
without any form of synchronization, and may communicate with each other. As such,
an instantiation of the system for the number of processes n consists of the parallel
execution of n processes.

Processes can act without interacting with another process and simply update their
own states, which is what we call local transitions. On the other hand, when a process
executes a global transition, it can first check the states of some other processes before
deciding its next state.

Which processes can interact with each other is determined by the topology of the
system. In this thesis, we focus on two topologies:

The first is a linear topology, where a process can perform checks over all other
processes, but can only distinguish between its right and left neighbours. That is,
processes can be thought of as organized from left to right on a line, and a process can
either check if any process, or only any process on its left (resp. right), is in a given state.

The other topology we consider is a multiset topology, which we define in this context
as a topology where a process can check all other processes, but cannot distinguish
between any of them - it is only possible to check whether there is another process that
is in a given state. This can be thought of as a weaker version of a linear topology, where
processes cannot even distinguish whether other processes are to the left or to the right
of them.

13

4. Parameterized Systems

We will consider Burns’ mutual exclusion algorithm as an example of a parameterized
system, which we use as a running example when we give more formal definitions in
the following. The algorithm is introduced in [Bur78].

4.1. Burns’ Mutual Exclusion Algorithm

In distributed computing, a frequent problem is managing a resource that is shared
among a number of parallel processes, but may only be used by a single processes at
once. For example, a program may contain a critical section that must be fully executed
by one process before another process can start executing it. Access to such a critical
section may be such a resource. We call problems like this mutual exclusion problems.

The dining philosophers problem, as it appears for example in [Hoa78], is a more
abstract example that is nonetheless widely referenced in the literature. In this problem
n philosophers sit at a round table, with a fork between each philosopher and each of
his neighbours. The philosophers can either think or eat. For thinking, there are no
additional requirements, but in order to eat, a philosopher needs to have two forks.
However the philosophers can only pick up their neighbouring forks one after another,
not both at once. This can lead to some undesirable situations. Imagine each philosopher
picking up the fork to their left at the same time, which means the philosophers are
stuck. All of them have a fork in their left hand, but since the fork to each philosophers
right is already in use, noone can start eating, and eventually, the philosophers starve.
We call such a situation where the system is stuck a deadlock.

Another problem can occur when the system is not stuck, but a philosopher that
wants to eat never is allowed to. For example, imagine our solution to the problem is
such that when a philosopher is hungry, he first takes the left fork, and then tries to take
the right fork. However if the right fork is already in use he puts the left fork down,
so someone else can use it, and tries again in five minutes. Then in the case that all
philosophers get hungry at the exact same time, they pick up the left fork first, then
try to take the right fork. Upon realizing that the right fork is already in use by the
philosopher to the right, they all simultaneously put down their left fork, and try again
in five minutes. However since the philosophers are in perfect sync, the same situation
will arise again. Therefore, even though the philosophers want to eat, and the system is
not in a deadlock, they never get to eat. On the contrary, if our algorithm for solving this
problem is designed in a way such that when a philosopher wants to eat, he eventually
gets to do so, we say that the algorithm satisfies starvation freedom.

Burns’ mutual exclusion algorithm is one way to ensure mutual exclusion, while satis-
fying freedom of deadlocks and of starvation. The algorithm is due to Burns [Bur78], and
has been covered extensively in the literature [Lyn96; JL98; AHH16]. A representation
of the algorithm from point-of-view of process i can be seen in Algorithm 1. Figure 4.2
illustrates the transitions as a state diagram, and is adapted from the literature [Haz15].

Note that the algorithm works on a linear topology - process i needs to know which
processes have smaller and greater process numbers than itself. Communication happens

14

4.1. Burns’ Mutual Exclusion Algorithm

� �

�

�

Figure 4.1.: An illustration of the dining philosophers problem, with n = 4 philosophers
and forks.

Algorithm 1 Pseudocode for Burns’ mutual exclusion algorithm, from the point of view
of process i. Adapted from [Lyn96]. The critical section that only one process at a time
should execute is line 6 (marked in red).

1: BEGIN: f lag[i] := 0
2: If there exists j < i such that that f lag[j] = 1 then goto BEGIN
3: f lag[i] := 1
4: If there exists j < i such that that f lag[j] = 1 then goto BEGIN
5: WAIT: If there exists j > i such that f lag[j] = 1 then goto WAIT
6: *Critical Section*
7: f lag[i] := 0
8: goto BEGIN

1start 2 3

45678

@j < i : f lag[j] = 1

∃j < i : f lag[j] = 1

@j < i : f lag[j] = 1

∃j < i : f lag[j] = 1

∃j > i : f lag[j] = 1

@j > i : f lag[j] = 1

Figure 4.2.: A state diagram of Burns’ mutual exclusion algorithm. Adapted from
[Haz15]. The critical section is represented by node 6 (marked in red).

15

4. Parameterized Systems

through an array of shared variables called flag, where f lag(j) = 1 signals that process j
wants to enter the critical section.

Initially, all flags are 0. From the point of view of process i, the first loop checks
whether there is any process with a smaller process number that has its flag set to 1. If
there is, that process first gets the right to enter the critical section, so process i returns
to the beginning. If there is not, process i sets its flag to 1 and rechecks all processes
with smaller flags, again moving back to the beginning if any have their flag set to 1.
This second check is important, since a process might have set its flag to 1 after it was
checked by process i, but before process i set its own flag to 1. After both checks have
shown no processes to the left have their flag set to 1, process i can now wait until all
processes with a larger process number have left the critical region, and signalled this
by setting their flag to 0. Now, process i can enter the critical section, and after leaving it
sets its flag back to 0. In our algorithm, the actual code of the critical section is omitted,
and we simply treat its end, i.e. setting the flag back to 0, as the entire critical section.

For a proof that Burns’ mutual exclusion algorithm ensures mutual exclusion, and
satisfies both deadlock-freedom and starvation-freedom, see [Lyn96].

In the following chapters, we review this example, and use it to illustrate the concepts.

4.2. Formal Definition of Parameterized Systems

A parameterized system is defined as a tuple (Q, ∆) where:

• Q is a finite set of states, and

• ∆ is a finite set of transition rules.

A configuration c = c1c2...cn is a word over the alphabet Q, and characterizes the state
of a system of n processes. The set of all configurations is denoted as C. Transition rules
can be of one of two possible forms:

• Local rules are rules that depend only on a single process, and they are of the form
src→ dst where src, dst ∈ Q.

• Global rules are rules that depend not only on a single process. They are instead
existential or universal rules that depend on other processes. Therefore, global rules
are of the following form:

If Q j ◦ i : c[j] ∈ S then src→ dst else src→ dst′,

where

– c = (c1, ..., cn) is the current configuration of the system,

– i ∈ {1, ..., n} is the current process,

– Q ∈ {∀, ∃} is the quantifier,

– ◦ ∈ {<,>, 6=} denotes the range of the rule,

16

4.2. Formal Definition of Parameterized Systems

– S ⊆ Q is the condition,

– src ∈ Q is the source, and

– dst, dst′ ∈ Q are the destinations.

Intuitively, a global rule means the i-th process inspects other processes of the
configuration in the range to check whether they satisfy the condition. For example,
the condition ∃j > i : c[j] ∈ {q1, q2} checks whether there exists a process j with a
greater process number than the current process i that is in state q1 or q2.

Checks are assumed to be instantaneous and atomic, i.e. one process checks
all other processes and then makes the move specified by the rule, without in-
terruption from other processes. Nonatomic checks are out of the scope of this
thesis.

For Burns’ mutual exclusion algorithm, we can formalize the algorithm by using eight
rules, of which three (one per loop in the algorithm) are global rules, and five are local
rules. Note that we denote the state of the processes as in the state diagram of Figure 4.2,
i.e. one state per line of the algorithm. Therefore, the states of Burns’ algorithm are
given by the finite set Q = {1, 2, 3, 4, 5, 6, 7, 8}. We do not need to consider the value of
the flag, since the line number determines the value of the flag - initially, the value of
the flag is 0. If a process is in one of lines 1, 2, 3 or 8, its flag is 0, otherwise it is 1. We
could include the flag in the process states by using pairs of lines and flag values. For
example, the process being in line 5 with its flag set to 1 is then represented as the tuple
(5, 1). However, for ease of notation we use only line numbers for our states.

The rules are as follows:

• 1→ 2,

• If ∃j < i : f lag[j] = 1 then 2→ 0 else 2→ 3,

• 3→ 4,

• If ∃j < i : f lag[j] = 1 then 4→ 0 else 4→ 5,

• If ∃j > i : f lag[j] = 1 then 5→ 5 else 5→ 6,

• 6→ 7,

• 7→ 8,

• 8→ 0.

For a configuration c = c1...cn, we denote as δ(c, t, i) the successor with respect to a
process index i and a transition rule t as applying t with process c[i] as current process.
Formally, this means:

17

4. Parameterized Systems

• If t is a local rule of the form src → dst, then δ(c, t, i) = c1 . . . ci−1 dst ci+1 . . . cn if
c[i] = src. Informally, this simply means applying the local rule to process i and
replacing that process by the result of the transition rule.

• If t is an existential rule of the form If ∃ j ◦ i : c[j] ∈ S then src → dst else
src → dst′, then if there exists some j such that j ◦ i and j ∈ S, then δ(c, t, i) =

c1 . . . ci−1 dst ci+1 . . . cn else δ(c, t, i) = c1 . . . ci−1 dst′ ci+1 . . . cn. Note that this only
holds if c[i] = src.

• If t is a universal rule of the form If ∀ j ◦ i : c[j] ∈ S then src → dst else
src → dst′, then if for all j such that j ◦ i, it also holds that j ∈ S, then δ(c, t, i) =
c1 . . . ci−1 dst ci+1 . . . cn else δ(c, t, i) = c1 . . . ci−1 dst′ ci+1 . . . cn. Again, this only
holds if c[i] = src.

Note that for both local and global rules if the current process is not in the source state,
i.e. c[i] 6= src, then δ(c, t, i) is undefined. By δ(c, i) we denote the set of successors
obtainable from c by any transition rule applied with i as the current process. For
configurations c, c′ we write c→ c′ if there exist i, t such that c′ = δ(c, t, i). We also say
that c is one-step-reachable from c′. We extend this notion to multi-step reachability,
which we denote as c ∗−→ c′. Informally, this means that c′ is reachable from c in zero
or more steps. More formally, c ∗−→ c′ if and only if c = c′ or c → c′ or there exists a
sequence c1, c2, ..., cj s.t. c→ c1 → c2 → ...→ cj → c′.

For a configuration c, we define the set of all successors obtainable from c, independent
of transition rule or current process, as post(c) = {c′| There exist t, i such that c′ ∈
δ(c, t, i)}. We can lift post to sets of configurations. For a set of configurations C =

{c1, c2, . . . }, we define post(C) =
⋃

c∈C post(c).
Note that for a linear topology, all types of transition rules outlined in this section are

possible - intuitively, global rules where we quantify over j > i resp. j < i check whether
any process to the right resp. left of process i satisfies the condition, while those where
we quantify over j 6= i check processes both to the left and to the right. Linear topologies
allow us to make all these checks. However for multiset topologies we can only quantify
over j 6= i in global rules, since processes can not distinguish between left and right
neighbours, but are instead only allowed to check whether any other process satisfies a
condition. Therefore we constrain global rules to this form in multiset topologies and
disallow quantifying over j < i and j > i.

4.3. Reachability Problem in Parameterized Systems

A problem frequently studied on parameterized systems is that of safety. To prove
safety for parameterized systems, one needs to ensure that certain bad configurations
cannot be reached for any number of processes. Therefore, in the context of this thesis,
reachability problems are equivalent to safety problems. A formal definition of the
reachability problem is given in the following.

Given

18

4.4. View Abstraction

• a parameterized system (Q, ∆),

• a set of initial configurations I ⊆ Q+, and

• a set of bad configurations B ⊆ Q+,

determine whether from any initial configuration ci ∈ I we can reach any of the bad
configurations. More formally, the system is unsafe if there exist ci ∈ I, cb ∈ B such that
ci
∗−→ cb.

In this context,we define the set of reachable configurations of size k as Rk = {c ∈ C|
There exists ci ∈ I such that ci

∗−→ c and |c| = k}. The set of reachable configurations
of all sizes is given as R =

⋃∞
k=1 Rk. We say that a parameterized system is safe with

respect to I and B if no bad configuration is in the set of reachable configurations. More
formally, R ∩ B = ∅.

Since there can be many bad configurations, which can make checking the intersection
for emptiness costly, we do not want to use the set B directly. Instead, in the context of
this thesis we assume that B is the upward closure of a finite set of minimal bad elements
Bmin.

For our example of Burns’ mutual exclusion algorithm, we want to ensure that the
algorithm maintains mutual exclusion. We defined the corresponding parameterized
system in Section 4.2. Now, we define a reachability problem on it. Recall that initially,
all processes start in state 1 in Burns’ algorithm, so our set of initial configurations is
given by the simple regular expression 1+. Bad configurations are those where two
states are simultaneously in the critical section. As a regular expression, our set of bad
configurations is therefore given by (S∗)6(S∗)6(S∗), where S denotes the set of states of
the algorithm. Noticeably, this is an infinite set, and storing the whole set is superfluous.
It is easy to see that with respect to the ordered subword relation, we can denote this set
by its unique minimal element 66.

4.4. View Abstraction

This section is dedicated to examining an algorithm for solving the reachability problem
in parameterized systems, as presented in Section 4.3. We call this the view abstraction
algorithm. Note that this algorithm is originally due to Abdulla et al. [AHH16]. Where
the description in this chapter differs from the original, we note this fact.

The basic idea behind the method lies in the use of an abstraction. When we apply the
abstraction to a configuration, it breaks it down into the patterns it contains. We call these
patterns views. When we use these views to reconstruct possible configurations, i.e. those
that produce a subset of these views when abstracted, we get at least the configuration
that we abstracted before. In addition, we might get other configurations that happen
to generate the same views. Therefore, when abstracting, then reconstructing, we
arrive at an overapproximation of our input. By making steps on the configurations
in this overapproximation, we can reconstruct an overapproximation of the reachable
configurations.

19

4. Parameterized Systems

Figure 4.3.: An illustration of how view abstraction is able to prove safety. As k increases,
the set of reachable configurations Rk grows larger, while the overapproxima-
tion Vk becomes smaller. At some point, either the reachable configurations
intersect with the bad configurations and the system is proven unsafe, or
the overapproximation does not intersect with the bad configurations and
the system is proven safe.

.

The basic intuition is that we parameterize the abstraction and reconstruction using a
parameter k. As mentioned, we generate an overapproximation by repeatedly abstract-
ing, performing a step on, and reconstructing a configuration until we reach a fixpoint.
This overapproximation becomes tighter as we increase k, and becomes closer and closer
to the set of reachable configurations. We call this fixpoint that is an overapproximation
of the reachable configurations Vk, where k denotes the parameter of the abstraction/re-
construction. This fixpoint can help prove safety. On the other hand, for one fixed size k
of initial configurations, we can simply perform exhaustive forward reachability from
them, which gives as a result the set of reachable configurations up to that size. This
helps prove unsafety. As we increase k, the set of reachable configurations grows, while
the overapproximation shrinks (but always remains an overapproximation). At some
point, when we consider configurations of sufficient size, either a bad configuration is
found by the forward reachability analysis (in which case the system can be deemed
unsafe), or no more bad configurations are present in the overapproximation (in which
case we know that the system is safe). See Figure 4.3 for an illustration of this rough
intuition.

20

4.4. View Abstraction

2 1 2

1 22 1 2 2

2 1 2 2 2 22 2 1 1 2 2

Figure 4.4.: An illustration of abstraction and reconstruction where k = 2. Note that for
reconstruction, we only show the configurations of size 3, and for abstraction,
only those of size 2, to illustrate that the reconstruction can contain different
configurations even of the same size as an input configuration. The colored
lines illustrate how patterns from the input configuration relate to the views.
The dashed and dotted lines illustrate how the views are recombined to
form the reconstruction.

4.4.1. Abstraction and Reconstruction

As noted in the last section, the underlying abstraction allows us to construct an
overapproximation of the reachable configurations. This abstraction is called view
abstraction, and it is parameterized by the size of the abstraction, which we denote as k.
We also refer to the abstraction with size k as the k-abstraction.

For a configuration c, we denote its k-abstraction as αk(c), and define it as follows:

Definition 1. αk(c) = {e ∈ C|e v c and |e| ≤ k}, where v denotes the ordered subword
relation as defined in Section 2.2.

We call the elements of αk(c) the views of c up to size k. Intuitively, the views of a
configuration are patterns of size k or less that can be found in it. We denote as V the
set of all possible views, and as Vk the set of all views up to size k.

We define the k-abstraction of a set of configurations C as follows:

Definition 2. αk(C) =
⋃

c∈C αk(c).

For a given set of views V, we define the k-reconstruction γk(V) as follows:

Definition 3. γk(V) = {c ∈ C|αk(c) ⊆ V}.

Less formally, the k-reconstruction of a set of views is a set containing those configu-
rations such that their k-abstraction is a subset of V.

21

4. Parameterized Systems

Note that since views of a configuration are again words over the states of the
parameterized systems, these views resemble smaller configurations.

Figure 4.4 illustrates abstraction and reconstruction, and can give some intuition
regarding the meaning of the views in the abstraction. Note that the figure only contains
subsets of the views in α2 and the configurations in γ2 due to size constraints. To give a
more complete example for abstraction and reconstruction, consider the configuration
c = 31223. In the following, we list the k-abstraction and respective reconstruction for
some possible values of k:

α1(c) ={1, 2, 3}
γ1(α1(c)) =L((1|2|3)∗) \ {ε}

α2(c) =α1(c) ∪ {31, 32, 33, 12, 13, 22, 23}
γ2(α2(c)) =L((3∗)(1|ε)(2∗)(3∗)) \ {ε}

α3(c) =α2(c) ∪ {312, 313, 322, 323, 122, 123, 223}
γ3(α3(c)) =α3(c) ∪ {3123, 31223, 3122, 3223, 1223}

α4 =α3(c) ∪ {3122, 3223, 3123, 1223}
γ4(α4(c)) =α4(c) ∪ {31223}

Note that the reconstruction always contains at least the views it was reconstructed
from, and that the k-reconstruction of the k-abstraction becomes smaller as k increases,
but it always contains at least the initial configuration c.

There are sets of views that do not make much sense to reconstruct from - namely,
those such that even the views of size up to k themselves are not in the k-reconstruction.
Consider for example the set of views V = {112, 121}. It is clearly impossible that V was
constructed by abstracting a configuration - for example, since the view 112 is contained
in V, the set would also need to contain the view 11 if it was constructed by abstracting
a set of views. This leads to unintended behaviour, where γk is empty for any k, even
though the k-reconstruction should always contain at least the input views up to size k.
To circumvent this, we introduce a notion of admissibility. This notion does not appear
in the original definition of the view abstraction method in [AHH16]. However for ease
of explanation, we include it here.

Definition 4. V is admissible if and only if for all k ∈N, v ∈ V, it holds that if |v| ≤ k, then
v ∈ γk(V).

Intuitively, we call a set of views V admissible if for all k, the k-reconstruction of V
contains the views of V up to size k. We now prove that admissibility is equivalent to
requiring that for all elements v ∈ V, V contains the |v|-abstraction of v, and introduce
some related lemmata first.

Lemma 1. For all x ∈ C, k ∈N, it holds that αk(x) ⊆ αk+1(x).

22

4.4. View Abstraction

Proof. Consider the k-abstraction of a configuration x. This abstraction contains all
ordered subwords of x of length up to k. For a larger value k′ > k, the k′-abstraction
then contains all the subwords of length up to k′, therefore also those up to length k, i.e.
those in the k-abstraction.

Lemma 2. For all x ∈ C, k ∈N, it holds that if k > |x|, then αk(x) = α|x|(x).

Proof. Recall that the k-abstraction of contains all ordered subwords of x up to size k.
Since all subwords of x are at most as long as x, the abstraction already contains all
ordered subwords of x when we are considering the |x|-abstraction, so larger abstractions
cannot add new subwords.

Lemma 3. V is admissible if and only if for every view v ∈ V, V contains the |v|-abstraction of
v.

Proof. Consider an admissible set V. Then admissibility requires that for all k, for all
v ∈ V such that |v| ≤ k, it holds that v ∈ γk(V). Therefore it must hold that αk(v) ⊆ V,
therefore, for all k, the k-abstractions of all views up to size k must be contained in
V. For a view v, we include all the views of its k-abstraction for every k if we include
α|v|(v), as shown in Lemma 2.

On the other hand, if we consider a set V such that for every view v ∈ V, it holds that
α|v|(v) ⊆ V, then that means that for every view v ∈ V it holds that v ∈ γk(V) for all k.
Therefore, V must be admissible.

Since we always start with a configuration (or set of configurations) that we then
abstract, it is easy to see that the resulting set is admissible. Therefore, from now on we
only reason about admissible sets of configurations when we apply reconstruction.

As mentioned before, we can obtain an overapproximation of a set of configurations
by abstracting and then reconstructing it. An important property of view abstraction is
that this becomes smaller as the size of the abstraction and reconstruction is increased.

Lemma 4 ([AHH16, Lemma 2]). For all C ⊆ C, it holds that C ⊆ · · · ⊆ γ3(α3(C)) ⊆
γ2(α2(C)) ⊆ γ1(α1(C)).

The post of a set of configuration X, as defined in Section 4.2, denotes the set
of successor configurations of the configurations in X. Recall that these successor
configurations are generated by applying possible transitions to each process of each
configuration individually. Similarly, we can define the abstract post function Apostk ,
parameterized by the size of the underlying abstraction k. For a set of views V, we
define:

Definition 5. Apostk(V) = αk(post(γk(V))).

Intuitively, the abstract post first reconstructs larger configurations from the input
configurations, then performs one step on them. Lastly, the resulting configuirations are
abstracted again, which means only configurations up to size k remain.

We observe that αk and γk are complementary operations. We list some properties
that these two operations satisfy in the following.

23

4. Parameterized Systems

Lemma 5 ([AHH16, Lemma 1]). For all k ∈ N, A, B ⊆ C, V, W ⊆ Vk, the following
properties hold:

1. If V ⊆W, then also γk(V) ⊆ γk(W).

2. A ⊆ γk(αk(A)).

3. If A ⊆ B, then also αk(A) ⊆ αk(B).

4. αk(γk(V)) ⊆ V.

These properties can all be derived in a straightforward manner from the definitions
of γk, αk and v.

Lemma 6 ([AHH16, Lemma 1]). For all k ∈N, A ⊆ C, B ⊆ Vk, it holds that αk(A) ⊆ B if
and only if A ⊆ γk(B).

Proof. For the proof, we reference the properties of Lemma 5.
Assume we have A, B such that αk(A) ⊆ B. By property 1 we derive that γk(αk(A)) ⊆

γk(B) must hold. Finally, by property 2, it then holds that A ⊆ γk(αk(A)) ⊆ γk(B),
therefore A ⊆ γk(B).

Now assume that we have A, B such that A ⊆ γk(B). Then by property 3, it holds
that αk(A) ⊆ αk(γk(B)). By property 4, it follows that αk(A) ⊆ αk(γk(B)) ⊆ B, therefore
αk(A) ⊆ B.

4.4.2. Algorithm

Algorithm 2 A scheme for the view abstraction algorithm. Adapted from [AHH16,
Algorithm 1].

1: for k := 1 to ∞ do
2: if Rk ∩ B 6= ∅ then return Unsafe
3: V := µX.αk(I) ∪ Apostk(X)

4: if γk(V) ∩ B = ∅ then return Safe

Having defined the view abstraction and its corresponding reconstruction, we can
now start defining the remaining components of the algorithm. The first step consists
of giving a schema of the algorithm, that we then expand into a concrete algorithm.
Pseudocode for the schema can be found in Algorithm 2. In the following, we explain
the algorithm line-by-line.

Line 1 initiates the outer loop, by which a parameter k is gradually increased until
it is sufficiently large to determine safety. Line 2 encompasses a forward reachability
analysis, since Rk are the reachable configurations of size k. Note that we have previously
defined the set Rk more formally in Section 4.3. If the reachable configurations of size k
contain a bad configuration, this obviously means that the system is unsafe, so we can
return. Otherwise, the algorithm progresses to line 3. This line contains the computation

24

4.4. View Abstraction

of a least fixpoint. We initialize this computation with the k-abstraction of the initial
configurations I, i.e. αk(I). In each iteration, we perform one abstract step, i.e. Apostk ,
and add the resulting configurations to the fixpoint. The computation stops when
no more change occurs and the fixpoint has been found. The resulting fixpoint V is
stable, i.e. Apostk(V) ⊆ V and it covers the views of size k generated from the initial
configurations, i.e. αk(I) ⊆ V.

Next, we prove that the reconstruction of such a fixpoint V covers all reachable views.

Lemma 7 ([AHH16, Lemma 3]). For all k ∈ N, V ⊆ V such that Apostk(V) ⊆ V and
αk(I) ⊆ V, it holds that R ⊆ γk(V).

Proof. Choose k, V such that it holds that Apostk(V) ⊆ V and αk(I) ⊆ V. By the
definition of Apostk , it holds that αk(post(γk(V))) ⊆ V. By Lemma 6, we can follow that
I ⊆ γk(V) and post(γk(V)) ⊆ γk(V). Since post is monotonic w.r.t. ⊆, we can follow
that post(I) ⊆ post(γk(V)) ⊆ V. Note that R = post∗(I). Because γk(V) covers I, i.e.
I ⊆ γk(V), and γk(V) is a fixpoint of post, i.e. post(γk(V)) ⊆ γk(V), it follows that
post∗(I) ⊆ γk(V). Therefore, it also holds that R ⊆ γK(V).

Informally, Lemma 7 means that the reconstruction of the fixpoint, i.e. γk(V), is an
overapproximation of the reachable configurations. Therefore, if γk(V) does not contain
bad configurations, then neither does R, which means we know that the system is safe.
This check occurs in line 4 of the algorithm in Algorithm 2.

What remains to be shown is that the reconstruction of the fixpoint from line 3
approaches the set of reachable configurations as k increases. In the following, we
denote the fixpoint obtained in iteration k as Vk.

Lemma 8 ([AHH16, Lemma 5]). For all k ∈N, it holds that γk+1(Vk+1) ⊆ γk(Vk).

Proof. We define for a fixed k ∈ N the i-th iteration of the fixpoint of Apostk as Vi
k . For

i = 0, we define V0
k = αk(I) and for all i ≥ 0, we define Vi+1

k = αk(post(γk(Vi
k))).

Now, we introduce an intermediate lemma regarding Vi
k for all i.

Lemma 9 ([AHH16, Lemma 5]). For all k ∈N \ {0} it holds that γk+1(Vi
k+1) ⊆ γk(Vi

k).

Proof. We proceed by induction over i. Consider the base case where i = 0. Then
V0

k = αk(I), and V0
k+1 = αk+1(I). By substitution in our statement, we now need to

prove that γk+1(αk+1(I) ⊆ γk(αk(I)). By Lemma 4, which claims that for larger k, the
overapproximation generated by abstraction and subsequent reconstruction becomes
smaller, this holds.

For the induction step, consider that for fixed i ≥ 0, it holds that γk+1(Vi
k+1) ⊆ γk(Vi

k).
Consider now the case for i + 1.

25

4. Parameterized Systems

γk+1(Vi+1
k+1) = γk+1(αk+1(post(γk+1(Vi

k+1)))) (4.1)

⊆ γk+1(αk+1(post(γk(Vi
k+1)))) (4.2)

⊆ γk(αk(post(γk(Vi
k+1)))) (4.3)

= γk(Vi
k+1) (4.4)

The equalities in 4.1 and from 4.3 to 4.4 are simply by definition. The subset relation
from 4.1 to 4.2 uses the induction hypothesis together with the fact that post is monotonic
w.r.t. ⊆, while the step from 4.2 to 4.3 uses Lemma 4.

Now, we can return to the main proof.

γk+1(Vk+1) = γk+1(
⋃
i≥0

Vi
k+1)

= γk+1(V0
k+1 ∪

⋃
i≥0

Vi+1
k+1)

= γk+1(αk+1(I) ∪
⋃
i≥0

αk+1(post(γk+1(Vi
k+1))))

⊆ γk+1(αk+1(I) ∪
⋃
i≥0

αk+1(post(γk(Vi
k)))) By Lemma 9

= γk+1(αk+1(I ∪
⋃
i≥0

post(γk(Vi
k))))

⊆ γk(αk(I ∪
⋃
i≥0

post(γk(Vi
k)))) By Lemma 4

= γk(αk(I) ∪
⋃
i≥0

αk(post(γk(Vi
k))))

= γk(V0
k ∪

⋃
i≥0

Vi+1
k)

= γk(Vk)

Therefore, the fixpoint becomes more precise as k increases. However, note that this is
not enough yet. Since for a set of configurations X and a constant k, γk(X) can in general
be infinite, we cannot ensure that there is necessarily a k such that γk(Vk) ∩ B = ∅, even
if R ∩ B = ∅ and the fixpoint becomes smaller for larger k.

Therefore, we need to prove that there is a k for which the overapproximation is tight
enough such that γk(Vk) ∩ B = ∅ if R ∩ B = ∅.

Lemma 10 ([AHH16, Lemma 6]). If the set of reachable configurations R is downward-closed
with respect to the ordered subword relation, then there is a k ∈N such that R = γk(Vk).

26

4.4. View Abstraction

Proof. Recall that by Lemma 7 it holds that for all k ∈N, V ⊆ C it holds that R ⊆ γk(V)

if V is a fixpoint of Apostk that covers αk(I).
Let us show that there exists k such that for any set X ⊆ C such that if X is a fixpoint

of post and X covers I, i.e. post(X) ⊆ X and I ⊆ X, and X is downward-closed w.r.t. v,
then it holds that γk(Vk) ⊆ X.

Note that X is downward-closed, and can therefore be characterized by a set of
maximal elements Xmax. Consider now the complement of X, i.e. X. This must be an
upward-closed set, and can therefore be characterized by a set of finite minimal elements
Xmin w.r.t. the well-quasi-order v. Let k be the maximal length of a minimal element of
X, i.e. k = maxm∈Xmin

|m|.
We now want to show that γk(αk(X)) = X. By property 2 of Lemma 5, we know

that X ⊆ γk(αk(X)). It remains to show that X ⊇ γk(αk(X)). Assume for contradiction
that there is an element e that is not contained in X, but e ∈ γk(αk(X)) holds. Then e
must be contained in X, and therefore be contained in ↑Xmin. It follows that there must
exist m ∈ Xmin such that m v e. Additionally, since m must be at most as long as the
longest minimal element of X, we know that |m| ≤ k. Because X is upward closed, m
can not be contained in the k-abstraction of X, since otherwise e must also be contained
in X. Therefore, m /∈ αk(X) and by definition of reconstruction e /∈ γk(αk(X)). This is a
contradiction, since we assumed e ∈ γk(αk(X)).

Therefore, it holds that γk(αk(X)) = X. Because X is a fixpoint of post, i.e. post(X) ⊆
X, it holds that post(X) ⊆ X. Then also post(γk(αk(X))) ⊆ X holds. Because of
monotonicity of αk w.r.t. ⊆, it holds that αk(post(γk(αk(X)))) ⊆ αk(X). Recall the
definition Apostk = αk · post · γk. Then it becomes clear that αk(X) is a fixpoint of Apostk .
Because Vk is by definition the least fixpoint of Apostk that covers αk(I), it must hold that
Vk ⊆ αk(X), and by Lemma 6 we follows that γk(Vk) ⊆ X. Finally, we observe that R
satisfies the constrains outlined for X initially: It is easy to see that R is a fixpoint of
post that covers I, i.e. post(R) ⊆ R and I ⊆ R.

There are two important propositions regarding termination and correctness of the
algorithm that are given in [AHH16, Corollary 1, Corollary 2], but are left without a
proof. We state these propositions in the following and provide proofs for them.

The first proposition regards termination and correctness of the algorithm when R is
downward-closed.

Proposition 1 ([AHH16, Corollary 1]1). If the set of reachable configurations R is downward-
closed with respect to the ordered subword relation, then the view abstraction algorithm is sound
and complete.

Proof. We consider two cases.
In the first case, a bad configuration is reachable, and the algorithm should return

unsafe. Then this means that there must be a bad configuration b ∈ B such that there is

1The proposition is slightly extended here. In [AHH16], the corollary only claims that the algorithm
terminates, and leaves soundness and completeness for another part of the paper.

27

4. Parameterized Systems

an initial configuration ci ∈ I such that ci
∗−→ b. Therefore, for k = |ci|, this means that

b ∈ Rk, which means the intersection check in line 2 of the algorithm in Algorithm 2
returns a nonempty set containing at least b, and the algorithm returns Unsafe in line 2.

In the second case, no bad configuration is reachable, therefore the algorithm should
return unsafe. By Lemma 10 and because R is downward-closed, there exists a k such
that γk(Vk) = R. Therefore, if the system is safe, i.e. R ∩ B = ∅, and when we consider
a sufficiently large k, then also γk(Vk) ∩ B = ∅ holds, and the algorithm returns Safe in
line 4.

The second proposition is concerned with the case when R is not necessarily downward-
closed, as can happen for some parameterized systems where some configurations of
size 1 are unreachable because more than one process is required to enter certain states
of the system.

Proposition 2 ([AHH16, Corollary 2]2). If B is upward-closed with respect to the ordered
subword relation v, and the transition relation→ is monotonic with respect to v, then it holds
that R ∩ B = ∅ if and only if ↓R ∩ B = ∅.

Proof. Recall the definition of monotonicity from Section 2.5. Because→ is a monotonic
relation, we know that for all sets of configurations C, C′ it holds that → (C) ⊆ C′

implies that→ (↓C) ⊆ ↓C′.
Now assume that we have R and B such that R ∩ B = ∅ and B is upward-closed.

Assume for contradiction that ↓R ∩ B 6= ∅. This means there must exist some e s.t.
e ∈ ↓R and e ∈ B, but e /∈ R. Since e is in the downward closure of R, there must
exist r ∈ R s.t. e v r. Because B is upward closed and e ∈ B, it must hold that r ∈ B.
Therefore, the intersection R ∩ B 6= ∅, which is a contradiction, therefore ↓R ∩ B = ∅.

Now we prove the other direction. It holds that R ⊆ ↓R, therefore if ↓R ∩ B = ∅ then
R ∩ B = ∅.

This means in the case where R is not downward closed but B is upward-closed, we
can simply use the downward-closure of R to check for the intersection with B. We make
use of this fact when we introduce the pseudocode for the view abstraction algorithm
later.

From the two propositions, we conclude that the view abstraction method is guaran-
teed to terminate, and is both sound and complete.

However, note that there are still several problems with implementing the algorithm
on a machine. These problems mostly stem from the use of the reconstruction γk, which
can in general be infinite. Therefore, it cannot be expressed directly in memory. In line
3, we use γk when computing Apostk , i.e. in the fixpoint iteration.

Note that in this fixpoint iteration, we only reconstruct the larger configurations in
order to perform a step on them. Since the length of configurations in the initialization
of the fixpoint is at most k, and the fixpoint iteration does not add larger configurations,
γk(V) always covers at least the configurations from V. Therefore, the successors of

2We remove part of the corollary here, since in the original, it contains two separate statements.

28

4.4. View Abstraction

the reconstruction of V covers at least the successors of V, i.e. post(V) ⊆ post(γk(V)).
Intuitively, by reconstructing, we do not disable transitions, but can only enable more
transitions by adding additional witness processes to the configurations. This is the case
because some configuration in the reconstruction may fulfill additional preconditions
of existential rules. Note that for existential rules, as defined in Section 4.2, we can
satisfy the precondition by adding a single process. This can give an intuition that since
the fixpoint only contains configurations of a finite size, and enabling transitions only
requires adding a finite number of witnesses, computing the infinite set γk(V) is not
necessary. To circumvent this infinite set, we restrict ourselves to the configurations in
γk(V) up to a certain size, and define a corresponding new operation.

We call this operation extension, and denote it as
∮ l

k , where k is the size of the
underlying abstraction, and l is the length of the extension. Intuitively, configurations in
the k-extension up to length l of the set of configurations V are those configurations in
the k-reconstruction of V, up to length l.

Definition 6.
∮ l

k (V) = {c|αk(c) ⊆ V ∧ |c| ≤ l}

Naturally, since configurations in
∮ l

k are limited in length, the extension can only
contain finitely many configurations.

Next, we want to prove that for a given k, in the computation of Apostk , we can replace
γk by

∮ l
k for some l. We already hinted at only needing to add a single witness process,

therefore, we choose l = k + 1.
We give the following lemma without a proof, which can be found in the original

presentation.

Lemma 11 ([AHH16, Lemma 4]). For all k ∈ N, V ⊆ V‖, it holds that αk(post(γk(V)) =

αk(post(
∮ k+1

k (V)).

Next, we modify lines 1 and 4 of the algorithm. First, note line 4, where we compute
the intersection of two potentially infinite sets, γk(V) and B. This intersection cannot
be computed in an exhaustive manner directly. However, recall that we assume that
the set of bad configurations B is the upward closure of a set of minimal elements Bmin
with respect to the ordered subword relation. One can imagine these minimal elements
as patterns of processes, such that when a configuration contains this pattern, it is
bad. Note that these minimal elements have similarities to the views up to size k of a
configuration, which are simply its ordered subwords of size k or less. Then it becomes
clear that if k is at least as large as the length of elements of Bmin, we can simply check
whether the intersection of V and Bmin is nonempty. However, note that this means
we need to start at a potentially large k. Figure 4.5 illustrates the relation between bad
configurations and minimal bad configurations.

We also need to modify the intersection check in line 2. This modification also appears
in [AHH16], but there is no proof that it is equivalent to the unmodified test. Therefore,
we add such a proof in the following.

29

4. Parameterized Systems

...

6 6

6 6 6 1 6 6 61 1

661 1 611 6

Figure 4.5.: An illustration of bad configurations and their relation to the minimal bad
configurations. This closely relates to view abstraction, which also uses the
ordered subword relation for generating views. This can give some intuition
as to why we only need to check the intersection between V and Bmin.

Algorithm 3 The view abstraction algorithm. Adapted from [AHH16, Algorithm 2].3

1: for k := maxb∈Bmin |b| to ∞ do
2: if ak(Rk) ∩ Bmin 6= ∅ then return Unsafe
3: V := µX. αk(Rk) ∪ αk(post(

∮ k+1
k (X))

4: if V ∩ Bmin = ∅ then return Safe

The modification is necessary because B, as an infinite set, does not lend itself to
exhaustive representation in memory. Since we test for a nonempty intersection here,
we do not run into the same problem as with the check in line 4, where we would
erronously terminate early with a potentially wrong result when starting with a k that is
not large enough.

Lemma 12. A system S, such that R is the set of reachable configurations in S, where R
is downward-closed with respect to the ordered subword relation, and B is the set of bad
configurations, is unsafe if and only if there is k ∈N such that αk(Rk) ∩ Bmin 6= ∅.

Proof. Assume S is unsafe, i.e. R∩ B 6= ∅. Therefore, there is a b such that b ∈ R∧ b ∈ B.
Since B is upward-closed with respect to the ordered subword relation v, there must be
a minimal decomposition b1

min, b2
min, . . . bn

min ∈ Bmin of b such that for all i ≤ n, it holds
that bi

min v b. We know that the k-abstraction of b contains its ordered subwords up to
size k. Consider an element of the minimal decomposition of b with minimal size, and
denote this element as bmin

min. Then for k = |bmin
min|, it must hold that bmin

min ∈ αk(b), since

3Note that in [AHH16, Algorithm 2], the algorithm starts k at 1. In iteration k, V then contains only views
up to size k, and if all minimal bad configurations are of size larger than k, the intersection V ∩ Bmin is
the empty set, even if the system is not safe when starting from larger initial configurations. There is no
proof given for the correctness of the algorithm without this adjustment in the original presentation,
and we believe this to be an oversight. Therefore, we adapt this here and start at the size of the largest
minimal bad configuration.

30

4.4. View Abstraction

both bmin
min v b and |bmin

min| ≤ k. Therefore, bmin
min ∈ Bmin, and because we assumed b ∈ Rk it

must also hold that bmin
min ∈ αk(Rk). We conclude that if the system is unsafe, then there

must be a k such that αk(Rk) ∩ Bmin 6= ∅.
For the other direction, suppose for the sake of contradicion that there is b ∈ αk(Rk) ∩

Bmin but the system is safe, i.e. R ∩ B = ∅. If b ∈ αk(Rk), there must be r ∈ Rk such that
b v r. Since R is downward closed with respect to the ordered subword relation, and
r ∈ R, it follows that b ∈ R. This is a contradiction, since we assumed the system is
safe.

The modified algorithm can be found in Algorithm 3.

4.4.3. Rendez-vous Transitions

Note that in our current model of parameterized systems, interactions are constrained to
one-way interactions. It is easy to see that for all global transitions, the current process
i observes the state of one or more other processes, and bases its behaviour on the
presence (or absence) of certain states. The observed processes do not change their state
based on the fact that they were observed. However, we sometimes want interactions
between multiple processes to simultaneously change the state of two or more of the
interaction partners. Consider for example Petri nets where each transition has the same
incoming and outgoing degree. The restriction on transitions means that no tokens
are created or destroyed, but tokens can change between states. Then we can model
tokens of the Petri net as processes of the parameterized system, and transitions of
the net as interactions between multiple processes, where each involved process may
simultaneously change its state.

More formally, we define a rendez-vous transition r as a tuple of local rules.4 In terms
of semantics, we define for a configuration c = c1, . . . , cn, a rendez-vous transition
r = (src1 → dst1, src2 → dst2, . . . , srcm → dstm) and mutually distinct process ids
p1, p2, . . . , pm ∈ [1, n] the successor of c w.r.t. the vector of process ids p = (p1, p2, . . . , pm)

and the transition rule r as c′ = c′1, . . . , c′n, where for all i, c′pi
= dsti, and c′i = ci if i /∈ p.

Note that this only holds when for all i, cpi = srci, otherwise the successor c′ is undefined.
Intuitively, for each local transition rule src→ dst in r, there needs to be a process that
is in state src. The transition updates the chosen processes simultaneously to their
respective dst-states. Note that in r, there could be multiple local rules with the same src.
For each such rule, there needs to be a different process in the src-state, i.e. the same
process cannot be chosen twice.

Also, note that existential rules that quantify over all processes j 6= i can also be
viewed as rendez-vous transitions.

We adapt the following lemma:

4In [AHH16], this type of transitions is called a simple rendez-vous transition. However, since in the context
of this thesis we do not introduce the more powerful general rendez-vous transitions, we do not make this
distinction here.

31

4. Parameterized Systems

Lemma 13 ([AHH16, Lemma 7]5). For a parameterized system P = (Q, ∆), where ∆ contains
local, global and rendez-vous transitions, let m be the largest arity of a rendez-vous rule
in ∆. Then for all k ∈ N, for all sets V of configurations of size up to k, it holds that
αk(post(γk(V))) ∪V = αk(post(

∮ k+m−1
k (V))) ∪V.

Intuitively, this lemma claims that rendez-vous transitions can be taken into account by
changing the extension operation used in the computation of the abstract post. Instead of
extending configurations by a single witness process, we need to add enough processes
to enable every rendez-vous transition where one of the src-states is already present in
the configuration, i.e. we extend the views to size k + m instead of to k + 1. A proof can
be found in [AHH16, Lemma 7], but is omitted here.

4.4.4. Global Process Pointers

Some mutex algorithms, such as Dijkstra’s algorithm [Dij65], make use of a global
variable called Process Pointer. This process pointer ranges over the process indices, and
can indicate for example which process is allowed to move into the critical section next.

Integrating such a process pointer into the method presents some obstacles, and we
examine those and their solutions in the following. The first problem is that we do not
have the capability to store anything outside the states of the processes in our current
model. We can circumvent this by adding an additional boolean variable to each process.
This variable is True when the process is the target of the process pointer, and False
otherwise. To ensure that there is always one target for each process pointer, changing
the pointer target happens via a rendez-vous transition that sets the pointer variable in
the old target to False, and at the same time sets it to True in the new target.

However, note that storing the process pointer implicitly in the variables of processes
means that when we abstract configurations, they could end up without the process that
is being pointed to. In that case, there is a configuration without a valid value for the
process pointer, which does not occur in the real system. Therefore, we need to always
keep the process that is the current pointer target when abstracting. We can do so by
performing a normal abstraction on the configuration of all processes except for the
process pointer, and then inserting the process pointer back into the views at the correct
position afterwards.

More details as to the implementation of process pointers can be found in Section 4.5.1.

4.4.5. Completeness for well-quasi-ordered systems

This section closely follows [AHH16, Section 3.6]. It is dedicated to examining for which
parameterized systems the view abstraction algorithm is complete.

We say that a transition system (C,→) is a well-quasi-orered (WQO) system with
respect to a well-quasi-order 4 if→ is monotonic with respect to 4⊆ C × C.

5We omit parts of the proof about broadcast transitions, which we do not introduce in this thesis.

32

4.5. Implementation

Definition 7. A discrete measure over a set S is a function ||.|| : S → N such that the set
{s ∈ S||s| = k} is finite for every k.

Intuitively, a discrete measure is something akin to the size of elements in S, under the
constraint that there can only be finitely many elements of any given size. Note that this
means the size of configurations of a parameterized system as defined in Section 4.2 is a
discrete measure. There are often infinitely many configurations because they can be of
unbounded size. However, for a given size, there are only finitely many configurations,
because there are only finitely many ways to build a configuration from the finitely many
states of processes. However, the size of configurations is only one possible discrete
measure. Therefore, one can think of discrete measures as generalizations of the size of
configurations. Indeed, the definitions of abstraction, reconstruction and abstract post
can be adjusted to use such a generalized discrete measure instead of configuration size.
We show this more formally in the following.

For a well-quasi-ordered system (C,→) w.r.t. 4, and a discrete measure ||.||, we
define αk(c) = {c′ ∈ C|c′ 4 c ∧ ||c′|| ≤ k}. Similar adjustments to the definitions of γk
and Apostk are fairly trivial, as their definitions are based on αk.

Note that the completeness and soundness results of Proposition 1 follows with only
minor adjustments when using this generalized discrete measure.

Theorem 1 ([AHH16, Theorem 1]). Let P = (C,→) be a well-quasi-ordered system with
respect to a measure ||.||. For I, B ⊆ C such that B is upward-closed with respect to 4, then if P
is safe with respect to the initial configurations I and the bad configurations B, then there must
be k ∈N s.t. B ∩ γk(Vk) = ∅, where Vk = µX.αk(I) ∪ Apostk(X).

Together with the results in Section 4.4.2, this means that the view abstraction algo-
rithm is complete for a large variety of systems. Among others, this includes Petri nets
(see Section 2.6) and population protocols (see Chapter 5).

4.5. Implementation

In [AHH16], Abdulla et al. mention that a prototype implementation of the view
abstraction method has been implemented in OCaml, and they show several benchmarks
on classical distributed algorithms. However, this prototype implementation is not
publicly available under a license that allows its use or modification at the time of
writing.

In order to provide a second implementation for the verification and reconstruction
of some of the results from the benchmark in [AHH16], we implemented the view
abstraction algorithm in Python. The implementation is available under the MIT license
at https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist.

Over the course of the implementation, some implementation details were ambigious,
and the literature did not give clarification as to how these details should be implemented.
In order to clarify and justify our decisions in the implementations of these details, the

33

https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist

4. Parameterized Systems

rest of this section is dedicated to presenting parts of the implementation, especially
where it is not straightforward to derive it from the algorithm in Algorithm 3.

4.5.1. Extension

Recall that we defined the extension of a set of views V ⊆ V as
∮ l

k (V) = {c ∈ C|αk(c) ⊆
V ∧ |c| ≤ l}. The naive way of computing this would be by simply enumerating all
finitely many configurations up to size l, and checking for each configuration whether
its k-abstraction is a subset of V. Since we cannot know the configurations a priori,
we need to check all possible configurations, which means all words over states of the
system. Assuming there are s states each process can assume, this means there are
sl + sl−1 + sl−2 + · · ·+ s1 possible words, and for each we need to compute its abstraction
and check if it is covered by V. It is easy to see that even for systems of modest size and
for comparatively small l, the naive approach is not feasible.

For this reason, we present in the following an algorithm for computing the extension∮ l
k (V). The main intuition behind the algorithm relies on the fact that V must be an

admissible set. In view abstraction, we need the extension operation for the fixpoint
iteration, which is seeded with αk(Ik), i.e. an admissible set, and each iteration of the
fixpoint applies Apostk = αk · post · γk. Because the last operation is again abstraction,
the result is admissible.

The intuition is that if V admissible and k is greater than the length of elements in V,
to compute

∮ l
k (V) it is sufficient to look at the views of size k and larger in V. Because

in view abstraction, V is always the result of applying k-abstraction, there are no views
larger than size k.

We prove first that the configurations of size ≤ k in the extension are those that are
already in V. Afterwards, we tackle the case for configurations of size > k.

Lemma 14. For an admissible set V ⊆ V , and constants k > 0, l > 0, it holds that {e ∈∮ l
k (V)| |e| ≤ k} = {v ∈ V| |v| ≤ k}.

Proof. We first show that {e ∈
∮ l

k (V)| |e| ≤ k} ⊆ {v ∈ V| |v| ≤ k}. Choose e with |e| ≤ k
such that e ∈

∮ l
k (V). By definition of

∮ l
k , it must hold that αk(e) ⊆ V. Because |e| ≤ k, it

must hold that e ∈ αk(e), since e is a subword of length at most k of itself. Therefore, it
must hold that e ∈ V.

Now we show that {e ∈
∮ l

k (V)| |e| ≤ k} ⊇ {v ∈ V| |v| ≤ k}.
Choose e with |e| ≤ k such that e ∈ V. Because V is admissible it holds that α|e|(e) ⊆ V,

and because |e| ≤ k it must then also hold that αk(e) ⊆ V. Since |e| ≤ k ≤ l it follows
that e ∈

∮ l
k (V) by definition of

∮ l
k .

Therefore, for all elements of size at most k, we simply take the elements from V, and
do not need to generate new ones. The remaining case is therefore when looking at
elements of size greater than k.

34

4.5. Implementation

We prove that in order to determine whether an element c with |c| ≥ k is in
∮ l

k (V), it
suffices to determine whether the views of size k in the k-abstraction of c are a subset of
the views of size k in V, i.e. we can discard the views of smaller sizes when computing
the configurations of size larger than k in the extension.

Lemma 15. For an admissible set V and constants k > 0, l > 0, for all configurations c such that
l ≥ |c| > k, it holds that c ∈

∮ l
k (V) if and only if {v ∈ αk(c)| |v| = k} ⊆ {v ∈ V| |v| = k}.

Proof. We first prove that if c ∈
∮ l

k (V), then also {v ∈ αk(c)| |v| = k} ⊆ {v ∈ V||v| = k}.
Take any c such that c ∈

∮ l
k (V) and |c| > k. Then it must hold that αk(c) ⊆ V. This

implies that {v ∈ αk(c)| |v| = k} ⊆ {v ∈ V| |v| = k}.
Now we prove the other direction. Choose any c such that {v ∈ αk(c)| |v| = k} ⊆
{v ∈ V| |v| = k} and l ≥ |c| > k. Now assume for contradiction that c /∈

∮ l
k (V).

Therefore, it must hold that αk(c) * V. Therefore, there exists v ∈ αk(c) such that
v /∈ V. Since {v ∈ αk(c)| |v| = k} ⊆ {v ∈ V| |v| = k}, it must hold that |v| < k. By
definition of abstraction, there exists v′ ∈ {v ∈ αk(c)| |v| = k} such that v v v′. Because
V is admissible and by assumption, v′ ∈ V, it must also hold that v ∈ V. This is a
contradiction, since we assumed v /∈ V.

Therefore, it becomes clear that regardless of l, we only need to check whether V
contains all views of length k in the k-abstraction of c. This gives rise to the algorithm
from Figure 4.

Algorithm 4 The extension algorithm.
Input:

• An admissible set of views V,
• the alphabet of possible letters A,
• the abstraction parameter k,
• the maximal length of generated configurations l.

Output:
∮ l

k (V)

1: procedure Extension

2: W := {v|v ∈ V ∧ |v| = k}
3: R := ∅
4: while W 6= ∅ do
5: w := W.pop()
6: if |w| < l then
7: for a ∈ A do
8: if For all w′ such that w′ v w and |w′| = k− 1, w′a ∈ V holds then
9: W = W ∪ {wa}

10: R = R ∪ {wa}
11: return R ∪ {v|v ∈ V ∧ |v| ≤ k}

35

4. Parameterized Systems

Figure 4.6.: An illustration of extension for systems with process pointers. The words
generated by inserting letter a before each process pointer target and at the
end of the word are candidates for configurations of the extension.

The intuition behind the algorithm relies heavily on Lemma 15. Since it suffices to
check the largest views, we start with each of them as a baseline. Now, we extend the
view to the right, one letter at a time with all possible letters and check whether the
addition we just made introduces any new views of size k and checks whether these
views also appear in V. For this, it is sufficient to check the subwords of length k− 1
of the existing view, together with the new addition. This procedure is wrapped into a
classical workset algorithm, where we simply keep extending these newly generated
views until we reach length l.

It is not necessary to extend the views to the left or in the middle. This is because
the resulting configuration needs to again satisfy the condition that all its subwords of
length k must be contained in V, therefore its subword from index 1 to index k must
be contained in V. Then, for any configuration in

∮ l
k (V), we can generate it by starting

with a view of size k of V and extending it to the right.
Extending this procedure to systems where we allow process pointers requires some

adjustments. The problem is that every configuration contains the states that are targets
of process pointers, but we do not include them as possible extensions, since otherwise
we would have multiple pointer targets. It does not suffice to extend the views to the
right in that case, since this does not allow for the word to the left of a given process
pointer to become longer. Therefore, when we use process pointers, there are more
possible points in the views where we need to consider extending them. Namely, we
try to extend the word to the left of each process pointer, and at the end of the word.
Figure 4.6 illustrates this concept.

4.5.2. Input Language

To enable users of the prototype to verify safety properties parameterized systems, there
needs to be a way to specify them. In the following, we present three different input
languages, each for a different class of parameterized system. Having multiple input
languages, instead of one unified language that can handle all cases, may seem wasteful.

36

4.5. Implementation

1 flag[i] := 0 # begin
2 goto (exists j < i: flag[j] = 1) begin
3 flag[i] := 1
4 goto (exists j < i: flag[j] = 1) begin
5 goto (exists j > i: flag[j] = 1) wait # wait
6 flag[i] := 0
7 goto (True) begin
8
9 arrays: flag

Figure 4.7.: The program specification for Burns’ mutual exclusion algorithm.

However, since Petri nets and population protocols (which we introduce in Chapter 5)
are widely used, there already exist input formats for these classes of systems that are
used in various tools. Supporting these input formats with no modification required by
the user is therefore a priority.

Program specification format

This language is used when the parameterized system in question follows a linear
topology, and there are no rendez-vous transitions. The pseudocode for Burns’ mutual
exclusion algorithm in Figure 1 can give an idea of the type of system that this language
supports.

In this language, we assume that each process has one or more local variables.
These variables are declared at the bottom of the specification as arrays. Note that
specifications are written from the point of view of process i. There are then two main
operations: Either process i can modify the values of one of its variables, or it performs a
(conditional) jump that depends on one or more other processes. Variable modifications
and jumps where the condition does not include other processes are then local rules,
while conditional jumps that depend on other processes correspond to global rules.

Figure 4.7 shows as an example Burns’ mutual exclusion algorithm specified in the
language.

Petri Net Markup Language

Because the program specificatio format only offers support for systems without rendez-
vous transitions. When we include these types of transitions and drop the assumption of
a linear topology for the weaker multiset topology, the parameterized systems essentially
are Petri nets.

Because Petri nets are widely used not only in the literature but also in many analysis
tools designed for industrial applications, there have been attempts to develop a standard
file format for their interchange. One of the most widely used formats is the Petri Net

37

4. Parameterized Systems

Markup Language (PNML), which is supported by many state-of-the-art-tools. Further
information about the format can be found in [Bil+03].

Population Protocol Specification

Population protocols, which are introduced in Chapter 5, can be viewed as Petri nets
that are extended with an output function that maps states to outputs. Even though
the PNML format is extendable and would allow for such a modification, such an
extension has not yet been introduced, and the available tools do not support it. Instead,
the tool Peregrine [BEJ18] uses a format based on the JavaScript Object Notation Data
Interchange Format [Bra17]. As Peregrine is the state-of-the-art tool for manipulation
and verification of population protocols, we offer support for that same format in our
implementation of the view abstraction algorithm.

38

5. Population Protocols

Population protocols are models for describing distributed systems with an arbitrary
number of agents. Each agent only has a limited amount of memory, which stores its
current state. Population protocols are introduced in [Ang+06], and have since been
studied extensively in the literature. For an introduction to population protocols and
their basic definitions, as well as some additions to the base model, see [AR09].

In the context of this thesis, population protocols are interesting because they are a
parameterized system, where the parameter is the number of agents. As such, they
face the same problems that made us turn to view abstraction as a way of verifying
parameterized systems in Chapter 4. In addition, several recent advancements have
given rise to literature about them. For a survey of recent results, see [Blo+18].

To our knowledge, view abstraction has not been applied to population protocols yet,
which appear as a natural candidate for testing and benchmarking the view abstraction
method on. This chapter is dedicated to establishing the basic definitions of population
protocols, and define a well-known correctness problem for them.

5.1. Definition

In a population protocol, there is an arbitrary number of agents, each in one of finitely
many possible states. In each step, a pair of agents is chosen uniformly at random, and
the agents of the pair interact according to some transition function, changing their
states.

Formally, a population protocol is defined as a tuple P = (Q, Σ, ι, δ, Y, ω), where:

• Q is a finite set of states,

• Σ is a finite input alphabet,

• ι : Σ→ Q is a mapping from letters of the input alphabet to states,

• δ ⊆ Q2 ×Q2 is the transition relation, where a transition of the form (q1, q2, q′1, q′2)
means that when two agents interact, and the first agent is in state q1, while the
second agent is in state q2, they update their states to q′1 and q′2 respectively,

• Y is a finite output alphabet, and

• ω : Q→ Y is a mapping from states to letters of the output alphabet.

39

5. Population Protocols

For many protocols, Y is given by a simple truth-indicator from {0, 1}. We call the
states of Q that are the image of some input letter of Σ under ι initial states. Note that
transitions can be nondeterministic, i.e. there could be two transitions (q1, q2, q′1, q′2) and
(q1, q2, q′′1 , q′′2) that both describe the behaviour when agents in states q1 and q2 meet.
Additionally, transitions can depend on order, i.e. the two transitions (q1, q2, q′1, q′2) and
(q2, q1, q′1, q′2) are not the same. We often do not explicitly give Y, Σ and ι, but instead
give the output function ω and a set of initial states I.

We use a well-known protocol as an example. This protocol is called 4-state majority or
simple majority protocol, and is referenced frequently in the literature [AR09; Blo+18]. The
underlying problem definition of the protocol is as follows: Given an initial population
of agents, where each agent has either opinion Yes or opinion No, are there more agents
with opinion Yes than with opinion No?

More formally, our input alphabet is then given as Σ = {Yes, No}. The protocol uses
the states Q = {Y, N, y, n}, and the input function ι defines ι(Yes) = Y and ι(No) = N.
The population protocol uses 4 transitions, which are given as follows:

Y, N → y, n

Y, n→Y, y

N, y→N, n

y, n→ n, n

The output alphabet is given by {0, 1}, where 0 indicates that the agent believes that
No has the majority, while 1 indicates that the agent believes Yes has the majority. The
output function ω maps Y and y to 1, while N and n are mapped to 0.

One can imagine the protocol working in two phases: Initially, all agents are in states
Y and N. By applying the first transition Y, N → y, n until there are no more agents
with state Y or no more agents with state N (or both), we can end the first phase. For
the second phase, there are three cases:

• Case 1: There are only agents in the states Y, y, n, which means transition Y, n→
Y, y can be used to convert the remaining n agents to y until only agents with
output 1 remain.

• Case 2: There are only agents in the states N, y, n, where similarly to Case 1,
transition N, y→ N, n can be used to convert all agents to states with output 0.

• Case 3: There are only agents in the states y, n, which means the transition
y, n→ n, n can be used until only agents in state n remain.

A configuration C = {|c1, c2, ...|} is a multiset over the set of states of the protocol. The
multiplicity of a state denotes how many agents are in the state at the configuration.
Note that this means that in population protocols, agents are anonymous - two agents
in the same state are not distinguishable.

40

5.2. Using population protocols for computation

Now, we can more formally define how transitions work. Similarly to Petri nets, we
define for a transition t = (q1, q2, q′1, q′2) and a configuration C that t is enabled at C if
and only if either q1 = q2 and C(q1) ≥ 2 or q1 6= q2 and C(q1) ≥ 1, C(q2) ≥ 1. Intuitively,
a transition is enabled if there is a pair of agents in C that has the states needed for t to
occur.

Note that if for a pair (q1, q2), there is no transition (q1, q2, q′1, q′2) ∈ δ, i.e. no transition
specifies which behaviour should occur when two agents with these states interact, we
assume there is a silent transition (q1, q2, q1, q2) that does not change the states of the
agents.

Firing a transition t = (q1, q2, q′1, q′2) at a configuration C where t is enabled leads to a
successor configuration C′ = (C \ {|q1, q2|}) ∪ {|q′1, q′2|}. We denote the fact that firing

t leads from C to C′ by writing C t−→ C′. We define some standard notions: One-step
reachability C → C′ holds if and only if there is a t such that C t−→ C′, and multi-step
reachability C ∗−→ C′ denotes the reflexive transitive closure of→.

5.2. Using population protocols for computation

In the last section, we introduced population protocols, and we already hinted at what
types of problems one might apply them to. This section formalizes what it means for a
protocol to compute a function, and how one can define correctness of a protocol. In the
following, P = (Q, Σ, ι, δ, Y, ω) denotes a population protocol.

An execution or run of P is an infinite sequence C0C1C2 . . . such that for all n ∈N it
holds that Cn → Cn+1. We denote the i-th element of an execution π as π(i).

We say a configuration C is in a consensus if there exists y ∈ Y such that for all e ∈ [[C]]
it holds that ω(e) = y. Therefore, a configuration is in a consensus if all its agents have
the same output. We can also overload the output function ω for configurations: if C
is in a consensus, and its agents have output y, then ω(C) = y, while a configuration
that is not in a consensus has no output. This is sometimes denoted as ω(C) = ⊥.
We revisit the the example of the 4-state majority protocol to illustrate these concepts.
In that protocol, the configurations {|N, n, n|} and {|Y, Y, y, y|} are in consensus with
output 0 and 1 respectively, while the configuration {|N, n, y|} is not in a consensus,
and therefore has output ⊥.

After assigning outputs to configurations, we now want to do the same for config-
urations. However, for this it does not simply suffice that the execution contains a
configuration with an output, since the execution might leave the configuration with
that output again, and even enter a configuration with a different output. Additionally,
executions are infinite, and therefore do not have a "final" configuration that one could
use to determine the output.

Instead, we use a convergence property. For a configuration π = C0C1C2..., we say
that π converges to an output y, denoted as ω(π) = y, if and only if there is an index
n0 ∈ N such that for all n ≥ n0, it holds that ω(Cn0) = y. Informally, the execution
has an output if there is a configuration after which all subsequent configurations

41

5. Population Protocols

have the same output. We say that π has reached a stable consensus with value y.
Otherwise, we reuse the notation from configurations, and we write ω(π) = ⊥ if π

does not have an output. For example, in the 4-state majority protocol, the execution
{|N, N, Y, Y|}{|N, Y, n, y|}{|n, n, y, y|}{|n, n, n, y|}{|n, n, n, n|} . . . has output 0. On the
other hand, the execution {|N, N, Y, Y|}{|N, Y, n, y|}{|N, Y, n, n|}{|N, Y, n, y|}{|N, Y, n, n|} . . . ,
where by using the transitions Y, n→ Y, y and N, y→ Y, n, the execution alternates be-
tween the configurations {|N, Y, n, y|} and {|N, Y, n, n|}, does not reach a configuration
in a consensus, and has output ⊥.

By considering these two executions, we can see that the output is not determined by
the initial configuration - in the second case, even though one could fire the transition
N, Y → n, y to make progress towards a consensus, by simply never firing it, one can
avoid a configuration with a consensus forever. In order to prohibit such behaviour, we
define a notion of fairness.

A configuration π is fair if a configuration that is reachable infinitely often also occurs
infinitely often. More formally, π is fair if and only if for all configurations C, C′ such
that C → C′ and C occurs infinitely often in π, then C′ occurs infinitely.

Related to fairness and convergence is the notion of well-specification. We say that P is
well specified if for every configuration only consisting of initial states, all fair executions
starting from that configuration converge to the same output.

Now, we can define what it means for a protocol to be correct, and to perform a
meaningful computation. We say that P computes a function f : Σ∗ → Y if and only if for
every possible input word w ∈ Σ∗, all fair executions starting at the initial configuration
C0 corresponding to w, i.e. where it holds for all x that C0(ι(x)) = |w|x, have output
f (w).

Deciding for a given population protocol and predicate whether the protocol computes
the predicate is at least as hard as Petri net reachability [Esp+17]. Recent results on this
problem have shown that it has non-elementary complexity [Cze+19].

5.3. Population Protocols and Petri Nets

One might notice similarities between population protocols and Petri nets. In both,
transitions and states are used in order to define how agents (or tokens) change between
states. In fact, population protocols characterize a certain subclass of Petri nets with arc
weights, namely where each transition has a total weight of 2 on its incoming arcs, and
a total weight of 2 on its outgoing arcs. This models the pairwise interactions between
agents in population protocols, and means that the number of agents in the Petri net
does not change.

As an example, Figure 5.1 shows on one side the transitions of the 4-state majority
protocol, while the oder side shows the corresponding Petri net. Intuitively, the trans-
formation simply involves having one place in the Petri net per state of the population
protocol, and having for each transition t = (q1, q2, q′1, q′2) of the population protocol a
transition in the petri net with incoming arcs from q1 and q2, and outgoing arcs to q′1

42

5.3. Population Protocols and Petri Nets

t1 : Y, N → y, n

t2 : Y, n→ Y, y

t3 : N, y→ N, n

t4 : y, n→ n, n

(a) The transitions
of the 4-state ma-
jority protocol.

Y N

y n

t1t2 t3

t4

2

(b) The Petri net corresponding to the 4-state majority
protocol.

Figure 5.1.: The transitions of the 4-state majority protocol, together with its representa-
tion as a Petri net with arc weights. The marking of the Petri net corresponds
to the configuration {Y, Y, N, y, n}.

and q′2.
We make use of this representation of population protocols as Petri nets later, when we

apply the view abstraction method to verify a specific property of population protocols.

43

6. Case Study

To test our implementation and ensure that its performance is in an acceptable range,
we benchmarked it on several examples of parameterized systems. One subclass we
focus on are population protocols, as defined in Chapter 5. This class of parameterized
systems lends itself to analysis, as it has recently been studied in the literature (see
Chapter 5 for a mention of some of the recent literature). Additionally, we implemented
a small prototype for tool-assisted manual generation of population protocols, using the
view abstraction algorithm.

All measurements of this chapter were run on an Intel Core i5-8250U CPU @ 1.60GHz
and 8GB of ram.

6.1. Interactive protocol generation

As mentioned in Chapter 5, it is a problem of non-elementary complexity to decide
whether a protocol computes a given predicate [Esp+17; Cze+19]. In general, this means
computing this on-the-fly can be impossible for large protocols.

Although there exist methods for generating a protocol for a given predicate, and
it has recently been shown that this construction takes only polynomial (w.r.t. size of
the predicate) time and generates a protocol with a polynomial number of states, these
protocols are not guaranteed to have fast convergence time, and are in general quite
slow [Blo+19]. Therefore, in order to find fast protocols, one might still need to involve
human input in the generation of the protocol.

While automatic generation of protocols is inefficient, manual generation is a tedious
and unintuitive process - population protocols do not lend themselves to sequential
composition, which means it is hard to separate the state space so that one can work on
one part of the protocol without disrupting parts that already function as intended. In
theorem proving, another similarly formal area, the widespread tool Isabelle [Pau94]
provides interactive feedback to the user. This section is dedicated to presenting a rough
prototype implementation of an interactive tool for manual generation of protocol, using
the view abstraction method to on-the-fly compute reachability properties on population
protocols, while a user generates them, and providing feedback based on that. In the
following, we introduce one property of population protocols called consensus stability,
which we argue can be useful in constructing well-specified population protocols to
compute given predicates, and describe how the view abstraction method can be used
to verify this property.

45

6. Case Study

6.1.1. Consensus Stability

For a population protocol P = (Q, Σ, ι, δ, Y, ω) and a set of states s ⊆ Q, we define:

Definition 8. The set of states s is consensus-stable with output y ∈ Y if for all c ∈ s∗, for all
configurations c′ such that c ∗−→ c′, it holds that ω(c′) = y.

Intuitively, a set of states s is consensus stable with output y if, starting from a
configuration that consists only of states from s, only configurations with output y are
reachable. This means when an execution reaches a configuration such that only states
from s appear, it is certain that the execution has output y, even though the states of
agents may still change. We say that a population protocol is y-consensus stable for
y ∈ Y when the set of all states with output y is consensus stable with that same output.

Determining the consensus stable sets of states of a protocol can help catch errors. For
example, consider the protocols that we benchmarked, where the results can be seen
in Table 6.2. The protocols that compute the same predicate very often have the same
behaviour w.r.t. consensus stability, i.e. both protocols from our sample that compute
majority satisfy both True and False consensus stability. Naturally, it is possible to design
a population protocol that computes the majority protocol without satisfying consensus
stability with respect to both outputs. However since many examples from the literature
do so, it can suggest that when one designs a new protocol for the majority predicate,
and it is not consensus-stable with respect to both True and False, it can be warrented
to look either for a typo in the protocol or for some superfluous states that could be
removed to simplify the protocol.

6.1.2. Checking Consensus Stability using View Abstraction

As introduced in the previous section, determining consensus stable sets of a population
protocol can be useful in order to facilitate manual, interactive, tool-assisted generation
of population protocols. This section is dedicated to presenting the details of how the
view abstraction method can be used to determine whether for a population protocol
P = (Q, Σ, ι, δ, Y, ω), given set of states of a protocol s ⊆ Q, all with the same output
y ∈ Y, it holds that s is consensus-stable w.r.t. y.

In Section 5.3, we present how a population protocol can be transformed into a
Petri net, where configurations of the protocol correspond to markings of the Petri net.
Note that the two representations are equivalent with respect to reachability, i.e. if a
marking is reachable in the Petri net from the initial markings, then the corresponding
configuration is reachable in the population protocol from the initial configurations.
We can easily see that consensus stability can be viewed as a reachability problem as
defined in Section 4.3. Given a P = (Q, Σ, ι, δ, Y, ω) and a set of states s ⊆ Q with the
output y ∈ Y, we want to determine whether s is consensus-stable w.r.t. y. We define
the corresponding reachability problem as follows:

• The underlying parameterized system is given as Q, δ, where δ contains rendez-
vous transitions, as defined in Section 4.4.3,

46

6.1. Interactive protocol generation

Figure 6.1.: The start screen of the interactive protocol generation prototype.

• the initial configurations are given by the regular expression s∗,

• and the bad configurations are given as an upward-closed set of a set of minimal
elements bmin = {x ∈ Q|ω(x) 6= y}.

Intuitively, our initial configurations are all possible combinations of states from s,
and we determine whether we can reach any configuration that contains a state with
an output other than y. Since there is a Petri net corresponding to the population
protocol such that they are equivalent with respect to reachability, we can apply the view
abstraction algorithm to this parameterized system using a multiset topology, extended
with rendez-vous transitions.

6.1.3. Prototype Implementation

Even though designing population protocols is prone to errors, few tools exist for
designing them manually with some form of assistance by the tool, i.e. integrated
simulation or verification. We are aware of the following tools:

• Peregrine [BEJ18] provides an intuitive user interface for the construction of
protocols, as well as built-in capabilities for experimental simulation and automatic
verification. However, this verification is not on-the-fly, which means errors while
constructing a protocol frequently occur, but can often be corrected afterwards.

• NETCS [Ama+15] is a tool for construction of population protocols, and pro-
vides simulation capabilities. As of September of 2019, the tool is not in active
development, and there is very little documentation.

Because existing tools provide little in terms of on-the-fly feedback we have im-
plemented a prototype in Python, based on the presented approach for interactive
tool-assisted protocol generation using consensus stability. It is available on https://
gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist under the MIT
license.

The prototype uses a simple command line interface to allow generation of protocols.
Figure 6.1 shows the initial screen after startup, and possible commands are listed here.

47

https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist
https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist

6. Case Study

Figure 6.2.: The interactive protocol generation prototype offers feedback after adding a
transition.

Figure 6.3.: The interactive protocol generation prototype can list multiple largest con-
sensus stable sets.

Note that the tool currently only supports boolean outputs, i.e. True and False, since they
are almost exclusively used among the literature.

We can manually generate a protocol step-by-step via the transition and state com-
mands. After adding a transition, the tool gives as feedback the consensus stable sets of
largest size w.r.t. both possible outputs. Naturally, after adding a state with no transition
involving that state, it is part of all largest consensus stable sets with the same output as
that state, so feedback is only shown when new transitions are created. The form of this
feedback can be seen in Figure 6.2.

We only show the consensus stable sets of largest size, since otherwise, when there
are many states, there are many consensus stable sets that are merely a subset of some
larger consensus stable set. However, when there are multiple such sets of largest size,
they are all listed, as can be seen in Figure 6.3.

When the user specifies a set of initial states via the command initial, the tool also
allows evaluating simple safety queries for upward-closed sets of bad configurations,
which are invoked using the command cover. This coverability analysis utilizes the
view abstraction method. The underlying methodology is similar to that presented in
Section 6.1.2, where we utilize view abstraction to check consensus stability in population
protocols. We merely need to adapt initial and bad configurations according to the initial
states and target configuration specified by the user. An example of how states can be
marked as initial, and then used for coverability queries, can be seen in Figure 6.4.

Lastly, the show command can be used to inspect the protocol generated so far, as
well as to rerun the computation of largest consensus stable sets. Figure 6.5 shows an

48

6.2. Benchmarks

Figure 6.4.: The tool allows the user to designate initial states and evaluate coverability
queries.

examplary result of this command.
The tool is generally fast enough to use for on-the-fly verification of small protocols

(<10 states with output True and False each). However, since this prototype does not
utilize caching of previously computed largest consensus stable sets, rerunning these
computations each time a new transition is added is fairly time intensive once there
are many states for at least one of the possible outputs. However, we believe that this
prototype still serves as a proof-of-concept that interactiveness can assist humans in
generating population protocols with fewer errors. Chapter 7 describes some areas where
further optimization might be possible, and suggests more types of useful interactive
feedback that could be added.

6.2. Benchmarks

To compare our implementation of the view abstraction method to the original prototype,
we ran both on two sets of benchmarks.

The first set of benchmarks are those from [AHH16, Section 6]. We restrict ourselves to
a subset of the atomic versions of protocols that use the linear topology1, and that exhibit
strong downward-closed invariants. Namely we are able to verify several algorithms
for mutual exclusion: Burns’, Dijkstra’s, and Bakery. The input specifications into our
program, as described in Section 4.5.2, can be found in Appendix A. The results reported
for the original prototype implementation were obtained by running the original source
code, obtained privately for evaluation purposes.

Table 6.1 shows the results for this first set of benchmarks. The times were obtained
by running each benchmark instance 40 times and taking the average of those times. All
times are given in seconds.

For these benchmarks, the two implementations perform relatively comparable. For
Bakery and Burns, our implementation is slower by a factor of 2. On the other hand,
our implementation is faster for Dijkstra’s aglorithm.

We suspect the difference in speed for Bakery and Burns is due to our implementation

1In [AHH16, Section 6], these are denoted as Array protocols.

49

6. Case Study

Figure 6.5.: The show command lists the current states and transitions, as well as the
largest consensus stable sets.

Protocol Time TimeOriginal k Sa f e

Bakery 0.01072 0.00576 2 True
Dijkstras 0.08581 1.39866 2 True

Burns 0.07966 0.04908 2 True

Table 6.1.: Benchmark results for verifying safety of mutex algorithms. Note that for
Dijkstras, the time reported in [AHH16, Section 6] differs from the one we
measured by around two orders of magnitude. We suspect this is due to
differences between the version that the paper is evaluated on and the version
of the original prototype that was made available to us.

50

6.2. Benchmarks

Protocol TimeTrue TimeFalse TimeTrue
Original TimeFalse

Original kTrue kFalse True
Stable

False
Stable

Threshold 0.17515 0.20509 0.00034 0.0003 2 2 False False
Threshold (Large

constant)
2.10702 3.67426 0.00092 0.00046 2 2 False False

Threshold
(Negative

coefficients)
0.44961 0.60939 0.00043 0.00036 2 2 False False

Remainder 0.01163 0.00931 0.00028 0.00027 2 2 False False
Flock-of-birds 0.00029 0.00624 0.00128 0.00026 1 2 True False
Flock-of-birds

(C=10)
0.00031 0.11886 0.00139 0.0003 1 2 True False

Flock-of-birds
(Tower)

0.00031 0.01224 0.00134 0.00028 1 2 True False

Flock-of-birds
(Alternative)

0.00033 0.00762 0.00138 0.00028 1 2 True False

Simple Majority 0.0008 0.00067 0.00176 0.00168 1 1 True True
Approximate

Majority
0.00086 0.00022 0.00172 0.00128 1 1 True True

Table 6.2.: Benchmark results for checking consensus stability of population protocols.

of forward reachability, which is not extensively optimized in our prototype and can
take as much as 80% of the analysis time. For Dijkstras, since it is the only example that
makes use of process pointers, we suspect that the original implementation does not
handle those as fast as the case without them.

The second set of benchmarks consists of population protocols. For those, we want to
determine whether they satisfy consensus stability, as defined in Section 6.1.1. We check
for each output whether the set of all states of that output is consensus stable. As all
protocols in question use the outputs True and False, we need two such checks for each
protocol.

Table 6.2 shows the results for this second set of benchmarks. Note that all times are
given in seconds. Again, all results were obtained by averaging 40 runs. The columns
TimeTrue resp. TimeFalse show the average time needed to determine True resp. False
consensus-stability using our prototype implementation in Python, while the columns
TimeTrue

Original and TimeFalse
Original give those values for the original prototype implementation

from [AHH16]. The two columns kTrue and kFalse show the value of k for which the
result could be determined. Note that the original prototype implementation does not
readily output the final value for k in some cases, so these values are obtained from our
implementation.

The Threshold, Remainder and Flock-of-birds protocols are given in [Ang+06]. The
Flock-of-birds (Tower) protocol is given in [Ang+07]. The Flock-of-birds (Alternative)
protocol is given as Threshold protocol in [Clé+11]. The approximate majority protocol
is given in [AAE08]. In order to see the exact protocols used, consult the bench-
marks available in the tool repository at https://gitlab.lrz.de/philip_offtermatt/

51

https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist
https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist

6. Case Study

viewabstraction-protocolassist.
The results show that except for the very simple examples like approximate and simple

majority, the original prototype implementation runs faster by a large margin. Especially
for the very large examples like Threshold with large constants, our implementation
is slower by a factor of hundreds to thousands. We suspect that this difference stems
again from the implementation of forward reachability. Our implementation uses a
fairly naive approach without much optimization, and forward reachability becomes
increasingly important as the size of the statespace grows.

One interesting detail can be noticed when comparing the time difference between
cases where the answer is True and False for each protocol. The original implementation
tends to be slow when the answer is True, and fast when the answer is False. On the
other hand, our implementation is fast when the answer is True, and slow when it is
False. We suspect this lies again in the implementation of forward reachability. Note
that when the answer is True, this can be concluded after running forward reachability
and fixpoint iteration k times. However, when the answer is False, forward reachability
is run k times, while fixpoint iteration is run k− 1 times. Since k is fairly small for all
our benchmarks, this means the effect of the difference in optimization between forward
reachability and fixpoint iteration becomes more pronounced.

52

https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist
https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist

7. Conclusion

In this thesis, we examine the view abstraction algorithm for verification of safety prop-
erties in parameterized systems, originally introduced in [AHH16]. In this context, we
give proofs for some statements that were given without one in the original introduction.
In addition, we have reimplemented and verified some of the original benchmarks, and
present a publicly accessible implementation for modification and evaluation. We prove
correctness of our proposed approaches for some implementation details. Although our
implementation does not have the same level of optimization as the original, it presents
reasonable performance on the samples we tested.

In addition to the reimplementation of the algorithm, we use view abstraction to check
properties of population protocols, which constitute a class of parameterized systems
that has been in widespread use in the literature recently. In this context, we introduce a
prototype for manual tool-assisted generation of population protocols, which utilizes
on-the-fly feedback as a way of enabling humans to make fewer errors when manually
designing such protocols.

The property we check on population protocols, and that is used provide feedback to
the user, is called consensus stability. We introduce a definition for this property, and
perform additional benchmarks for the view abstraction algorithm on it.

In the following, we present some avenues for future work:

Implement contexts and non-atomic transitions. In the original introduction of the
view abstraction algorithm, several extensions are presented. Notably, there is an
extension of the algorithm to cope with non-atomic transitions, as well as systems that
do not have strong downward-closed invariants. Even though these extensions are not
necessary in the scope of this thesis, since the algorithm can be applied to the subclass
of parameterized systems we focus on in this thesis without them, implementing them
is a necessary step of fully verifying and reimplementing the results of [AHH16], so that
the full method with its extensions is publicly available in an implementation.

Optimization of interactive protocol generation prototype. Since the tools imple-
mented over the course of this thesis were meant to be protoypes, the focus was not
on optimization, but mainly on developing a proof-of-concept of the fundamentals.
Therefore, there are ample opportunities for optimization. One approach that seems
especially promising would be to use some caching techniques in order to accelerate
the forward reachability step of the view abstraction algorithm. This might allow the
prototype for interactive protocol generation to handle larger protocols, and could
remove delays.

53

7. Conclusion

Integration of interactive protocol generation into state-of-the-art tools. In particular,
the tool Peregrine, which is used for simulation, automatic verification and generation
of population protocols, already provides automatic verification, but lacks capability for
on-the-fly feedback. A logical next step in order to enhance usability of the prototype
implemented in the context of this thesis would be to integrate it into such an already
existing tool.

Integrate other useful forms of feedback. Even though consensus stability might give
some hints regarding the correctness of a population protocol, it is not the only type
of feedback one might want. Other considerations are to compute on-the-fly the (or
one possible) predicate that a protocol is computing. It is possible to verify whether a
protocol computes a given predicate, but even this is not something that is fast enough
for use as on-the-fly feedback. Deciding which predicate a protocol is computing seems
even less feasible in this context. However, it does not seem unreasonable to hope for
heuristics that could speed such a verification up in many cases, even though they might
not reduce the actual complexity bounds.

Complexity analysis. Even though the view abstraction algorithm has been bench-
marked experimentally, there are currently no further results regarding its complexity.
This remains an open question, and it might be interesting to find subclasses of parame-
terized systems where the algorithm can be proven to be fast.

Limitations of view abstraction. In [AHH16], it is claimed that even for classes of
systems where the view abstraction is not in general sound and complete, it can often
still produce invariants of the system that are strong enough to prove safety. This opens
up the question of whether there is some larger class of parameterized systems where
the algorithm is not guaranteed to return a correct result, but where there is a weaker
guarantee that the algorithm returns an invariant of the system. This invariant might
then be useful as an initial input for a different invariant analysis, where starting with
more invariants can lead to finding results earlier.

54

A. Mutual Exclusion Algorithms

This appendix is dedicated to presenting input specifications for the mutual exclusion
algorithms evaluated in Section 6.2.

A.1. Burns

1 flag[i] := 0 # begin
2 goto (exists j < i: flag[j] = 1) begin
3 flag[i] := 1
4 goto (exists j < i: flag[j] = 1) begin
5 goto (exists j > i: flag[j] = 1) wait # wait
6 flag[i] := 0
7 goto (True) begin
8
9 arrays: flag

A.2. Dijkstra

1 flag[i] := 1 # begin
2 goto ($P = i) endfirstif
3 goto (flag[$P] != 0) wait # wait
4 $P := i
5 goto (exists j != i: flag[j] = 1) begin # endfirstif
6 flag[i] := 0
7 goto (True) begin
8
9 arrays: flag

10 process_pointers: $P

55

A. Mutual Exclusion Algorithms

A.3. Bakery

1 flag[i] := 0 # begin
2 flag[i] := 1
3 goto (exists j<i: flag[j]=1) begin # begin
4 goto (exists j>i: flag[j]=1) waittwo # waittwo
5 goto (True) begin
6
7 arrays: flag

56

List of Figures

2.1. An example of a Petri net. 8
2.2. An example of a Petri net with arc weights. 9

4.1. An illustration of the dining philosophers problem, with n = 4 philoso-
phers and forks. 15

4.2. A state diagram of Burns’ mutual exclusion algorithm. 15
4.3. An illustration of how view abstraction is able to prove safety. 20
4.4. An illustration of abstraction and reconstruction where k = 2. 21
4.5. An illustration of bad configurations and their relation to the minimal

bad configurations. 30
4.6. An illustration of extension for systems with process pointers. 36
4.7. The program specification for Burns’ mutual exclusion algorithm. 37

5.1. The transitions of the 4-state majority protocol, together with its repre-
sentation as a Petri net with arc weights. 43

6.1. The start screen of the interactive protocol generation prototype. 47
6.2. The interactive protocol generation prototype offers feedback after adding

a transition. 48
6.3. The interactive protocol generation prototype can list multiple largest

consensus stable sets. 48
6.4. The tool allows the user to designate initial states and evaluate coverability

queries. 49
6.5. The show command lists the current states and transitions, as well as the

largest consensus stable sets. 50

57

List of Tables

6.1. Benchmark results for verifying safety of mutex algorithms. 50
6.2. Benchmark results for checking consensus stability of population protocols. 51

59

Bibliography

[AAE08] D. Angluin, J. Aspnes, and D. Eisenstat. “A simple population protocol
for fast robust approximate majority.” In: Distributed Computing 21.2 (2008),
pp. 87–102.

[Abd+96] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. “General decidabil-
ity theorems for infinite-state systems.” In: Proceedings 11th Annual IEEE
Symposium on Logic in Computer Science. IEEE. 1996, pp. 313–321.

[AHH14] P. A. Abdulla, F. Haziza, and L. Holık. “Block Me If You Can!” In: Interna-
tional Static Analysis Symposium. Springer. 2014, pp. 1–17.

[AHH16] P. Abdulla, F. Haziza, and L. Holık. “Parameterized verification through
view abstraction.” In: International Journal on Software Tools for Technology
Transfer 18.5 (2016), pp. 495–516.

[AIM10] L. Atzori, A. Iera, and G. Morabito. “The internet of things: A survey.” In:
Computer networks 54.15 (2010), pp. 2787–2805.

[Ama+15] D. Amaxilatis, M. Logaras, O. Michail, and P. G. Spirakis. “NETCS: A new
simulator of population protocols and network constructors.” In: arXiv
preprint arXiv:1508.06731 (2015).

[And+05] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kun-
dur, N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, et al. “Causes
of the 2003 major grid blackouts in North America and Europe, and rec-
ommended means to improve system dynamic performance.” In: IEEE
transactions on Power Systems 20.4 (2005), pp. 1922–1928.

[Ang+06] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. “Compu-
tation in networks of passively mobile finite-state sensors.” In: Distributed
computing 18.4 (2006), pp. 235–253.

[Ang+07] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. “The computational
power of population protocols.” In: Distributed Computing 20.4 (2007), pp. 279–
304.

[AR09] J. Aspnes and E. Ruppert. “An introduction to population protocols.” In:
Middleware for Network Eccentric and Mobile Applications. Springer, 2009,
pp. 97–120.

[BEJ18] M. Blondin, J. Esparza, and S. Jaax. “Peregrine: A Tool for the Analysis
of Population Protocols.” In: International Conference on Computer Aided
Verification. Springer. 2018, pp. 604–611.

61

Bibliography

[Bil+03] J. Billington, S. Christensen, K. Van Hee, E. Kindler, O. Kummer, L. Petrucci,
R. Post, C. Stehno, and M. Weber. “The Petri net markup language: concepts,
technology, and tools.” In: International Conference on Application and Theory
of Petri Nets. Springer. 2003, pp. 483–505.

[BIS19] M. Bozga, R. Iosif, and J. Sifakis. “Checking deadlock-freedom of para-
metric component-based systems.” In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer. 2019, pp. 3–
20.

[BK08] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.

[Blo+18] M. Blondin, J. Esparza, S. Jaax, and A. Kučera. “Black Ninjas in the Dark:
Formal Analysis of Population Protocols.” In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science. ACM. 2018, pp. 1–10.

[Blo+19] M. Blondin, J. Esparza, B. Genest, M. Helfrich, and S. Jaax. Succinct Population
Protocols for Presburger Arithmetic. 2019. arXiv: 1910.04600 [cs.DC].

[Bou+00] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. “Regular model check-
ing.” In: International Conference on Computer Aided Verification. Springer.
2000, pp. 403–418.

[Bra17] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. STD
90. RFC Editor, Dec. 2017.

[Bur78] J. E. Burns. “Mutual exclusion with linear waiting using binary shared
variables.” In: ACM SIGACT News 10.2 (1978), pp. 42–47.

[Clé+11] J. Clément, C. Delporte-Gallet, H. Fauconnier, and M. Sighireanu. “Guide-
lines for the verification of population protocols.” In: 2011 31st International
Conference on Distributed Computing Systems. IEEE. 2011, pp. 215–224.

[Cze+19] W. Czerwiński, S. Lasota, R. Lazić, J. Leroux, and F. Mazowiecki. “The
reachability problem for Petri nets is not elementary.” In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing. ACM. 2019,
pp. 24–33.

[Dij65] E. W. Dijkstra. “Solution of a problem in concurrent programming control.”
In: Communications of the ACM 8.9 (1965), p. 569.

[Esp+17] J. Esparza, P. Ganty, J. Leroux, and R. Majumdar. “Verification of population
protocols.” In: Acta Informatica 54.2 (2017), pp. 191–215.

[Esp14] J. Esparza. “Keeping a crowd safe: On the complexity of parameterized
verification (invited talk).” In: 31st International Symposium on Theoretical
Aspects of Computer Science (STACS 2014). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. 2014.

[Esp17] J. Esparza. Petri Nets Lecture Notes. Accessed on 30.09.2019. June 2017.

[Haz15] F. Haziza. Parameterized Verification through View Abstraction - Experiments.
Accessed on 30.09.2019. Mar. 2015.

62

http://arxiv.org/abs/1910.04600

[Hoa78] C. A. R. Hoare. “Communicating sequential processes.” In: The origin of
concurrent programming. Springer, 1978, pp. 413–443.

[JL98] H. E. Jensen and N. A. Lynch. “A proof of burns n-process mutual ex-
clusion algorithm using abstraction.” In: International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer. 1998,
pp. 409–423.

[JM97] J.-M. Jazequel and B. Meyer. “Design by contract: The lessons of Ariane.”
In: Computer 30.1 (1997), pp. 129–130.

[Kru72] J. B. Kruskal. “The theory of well-quasi-ordering: A frequently discovered
concept.” In: Journal of Combinatorial Theory, Series A 13.3 (1972), pp. 297–305.

[Lyn96] N. A. Lynch. Distributed algorithms. Elsevier, 1996. Chap. 10.6.

[Nip+19] T. Nipkow, H. Seidl, J. Esparza, and J. Křetınsk. Lecture Notes Einführung
in die Theoretische Informatik. https://www21.in.tum.de/teaching/theo/
SS19/folien-handout.pdf. Apr. 2019.

[Pau94] L. C. Paulson. Isabelle: A generic theorem prover. Vol. 828. Springer Science &
Business Media, 1994.

[TW10] L. Tan and N. Wang. “Future internet: The internet of things.” In: 2010 3rd
international conference on advanced computer theory and engineering (ICACTE).
Vol. 5. IEEE. 2010, pp. V5–376.

[Vis+03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. “Model checking
programs.” In: Automated software engineering 10.2 (2003), pp. 203–232.

63

https://www21.in.tum.de/teaching/theo/SS19/folien-handout.pdf
https://www21.in.tum.de/teaching/theo/SS19/folien-handout.pdf

	Acknowledgments
	Abstract
	Contents
	Introduction
	Preliminaries
	Multisets
	Words
	Regular Expressions
	Well-Quasi-Orderings
	Monotonicity
	Petri Nets

	Related Work
	Parameterized Systems
	Burns' Mutual Exclusion Algorithm
	Formal Definition of Parameterized Systems
	Reachability Problem in Parameterized Systems
	View Abstraction
	Abstraction and Reconstruction
	Algorithm
	Rendez-vous Transitions
	Global Process Pointers
	Completeness for well-quasi-ordered systems

	Implementation
	Extension
	Input Language

	Population Protocols
	Definition
	Using population protocols for computation
	Population Protocols and Petri Nets

	Case Study
	Interactive protocol generation
	Consensus Stability
	Checking Consensus Stability using View Abstraction
	Prototype Implementation

	Benchmarks

	Conclusion
	Mutual Exclusion Algorithms
	Burns
	Dijkstra
	Bakery

	List of Figures
	List of Tables
	Bibliography

