Continuous One-Counter Automata

Philip Offtermatt

Joint work with: Michael Blondin, Tim Leys, Filip Mazowiecki, Guillermo Pérez

Powered by BeamerikZ

Continuous One-Counter Automata

Philip Offtermatt

Joint work with: Michael Blondin, Tim Leys, Filip Mazowiecki, Guillermo Pérez

[2021/08/16 09:44:28 (16)]

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Goal: Find efficient overapproximations for models with hard reachability problems

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Goal: Find efficient overapproximations for models with hard reachability problems

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Goal: Find efficient overapproximations for models with hard reachability problems models representing interesting systems

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Goal: Find efficient overapproximations for models with hard reachability problems models representing interesting systems

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Goal: Find efficient overapproximations for models with hard reachability problems models representing interesting systems One-Counter Automata

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Represent complex systems

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Represent complex systems

But **Reachability is undecidable!** ...even with only two counters [Minsky,'61]

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Represent complex systems

But **Reachability is undecidable!** ...even with only two counters [Minsky,'61]

\Rightarrow Restrict to **One**-Counter Automata!

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Run: q(0)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Run: $q(0) \rightarrow r_1(5)$

Run: $q(0) \rightarrow r_1(5)$

 \rightarrow r₂(3) **Run:** $q(0) \rightarrow r_1(5)$

 \rightarrow $r_2(3) \rightarrow$ $r_2(2)$ **Run:** $q(0) \rightarrow r_1(5)$

 \rightarrow $r_2(3) \rightarrow r_2(2) \rightarrow p(1)$

Run: $q(0) \rightarrow r_1(5)$

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Variants of One-Counter Automata (OCA)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Variants of One-Counter Automata (OCA)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless OCA: NP-complete

[Haase et al.,'09]

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless OCA: NP-complete

[Haase et al.,'09]

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless OCA: NP-complete

[Haase et al.,'09]

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

Parametric OCA: Decidability unknown

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless OCA: NP-complete

[Haase et al.,'09]

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

Our goal: Overapproximate OCA efficiently!

Parametric OCA: Decidability unknown

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Propose novel model: Continuous One-Counter Automata (COCA) Overapproximation for OCA with tractable complexity

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Propose novel model: Continuous One-Counter Automata (COCA) Overapproximation for OCA with tractable complexity

Prove complexity results:

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Propose novel model: Continuous One-Counter Automata (COCA) Overapproximation for OCA with tractable complexity

Prove complexity results:

Reachability in guardless COCA: In NC^2

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Propose novel model: Continuous One-Counter Automata (COCA) Overapproximation for OCA with tractable complexity

Prove complexity results:

Reachability in guardless COCA: In NC^2

Reachability in **standard COCA**: In **P-time**

> Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Propose novel model: Continuous One-Counter Automata (COCA) Overapproximation for OCA with tractable complexity

Prove complexity results:

Reachability in guardless COCA: In NC^2

Reachability in **standard COCA**: In **P-time**

Reachability in **parametric COCA**: **NP-complete**

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)

Run: q(0)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Run: $q(0) \xrightarrow{4/5} r_1(4)$

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Run: $q(0) \xrightarrow{4/5} r_1(4) \xrightarrow{1} p(5)$

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless OCA: NP-complete

[Haase et al.,'09]

 \Rightarrow

Guardless COCA: in **NC**² (below P-time)

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

Parametric OCA: Decidability unknown

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless OCA: NP-complete

[Haase et al.,'09]

Guardless COCA: in NC² (below P-time)

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

Parametric OCA: Decidability unknown

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless OCA: NP-complete

[Haase et al.,'09]

Guardless COCA: in **NC²** (below P-time)

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

NC²: Polynomially many random-access machines running for at most O(log²n) steps in parallel

Parametric OCA: Decidability unknown

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless OCA: NP-complete

[Haase et al.,'09]

Guardless COCA: in **NC²** (below P-time)

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

Parametric OCA: Decidability unknown

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

NC²: Polynomially many random-access machines running for at most O(log²n) steps in parallel

Notably:

Graph reachability $\in \mathbb{NC}^2$ Also for weighted graphs!

OverReach is a single interval (with a gap)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

OverReach is a single interval (with a gap)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

OverReach is a single interval (with a gap)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

OverReach is a single interval (with a gap)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

OverReach is a single interval (with a gap)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

OverReach is a single interval (with a gap)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

OverReach is a single interval (with a gap)

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \rightarrow \cdots$ symmetric!

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \rightarrow \cdots$ symmetric!

Cycle with a **negative** edge between p and $q \Rightarrow \ell = -\infty$

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \rightarrow \cdots$ symmetric!

Cycle with a **negative** edge between p and $q \Rightarrow \ell = -\infty$

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \rightarrow \cdots$ symmetric!

Cycle with a **negative** edge between p and $q \Rightarrow \ell = -\infty$

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \rightarrow \cdots$ symmetric!

Cycle with a **negative** edge between p and $q \Rightarrow \ell = -\infty$

Check for each node *n*: Is there a path from *n* to *n* with a negative edge? $\Rightarrow \in \mathbb{NC}^2$

> Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \cdots$ symmetric!

Cycle with a **negative** edge between p and $q \Rightarrow \ell = -\infty$

Check for each node *n*: Is there a path from *n* to *n* with a negative edge? $\Rightarrow \in \mathbb{NC}^2$ Otherwise: $\ell = v - \min$. sum of negative edges among paths $p \rightarrow q$

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \rightarrow \cdots$ symmetric!

Cycle with a **negative** edge between p and $q \Rightarrow \ell = -\infty$

Check for each node *n*: Is there a path from *n* to *n* with a negative edge? $\Rightarrow \in \mathbb{NC}^2$ Otherwise: $\ell = v - \min$. sum of negative edges among paths $p \rightarrow q$

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez
1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \rightarrow \cdots$ symmetric!

Cycle with a **negative** edge between p and $q \Rightarrow \ell = -\infty$

Check for each node *n*: Is there a path from *n* to *n* with a negative edge? $\Rightarrow \in \mathbb{NC}^2$ Otherwise: $\ell = v - \min$. sum of negative edges among paths $p \rightarrow q$

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, uOverReach(p(v))[q]: how do we compute this? $\cdots (\ell, \ell, v) \cup (v, u) \rightarrow \cdots$ symmetric!

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

v is **included** if **any path** $p \rightarrow q$ has positive **and** negative edges

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

v is **included** if **any path** $p \rightarrow q$ has positive **and** negative edges

 \Rightarrow Can be checked in NC²: Reachability in modified copies of the underlying graph C

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

 \Rightarrow Checking whether a path from q to p has positive and negative edges via graph reachability

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

 \Rightarrow Checking whether a path from q to p has positive and negative edges via graph reachability

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

 ℓ included if $q(\ell)$ reachable by path with no pos. edges *u* included if q(u) reachable by path with no neg. edges

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

 ℓ included if $q(\ell)$ reachable by path with no pos. edges *u* included if q(u) reachable by path with no neg. edges

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

 ℓ included if $q(\ell)$ reachable by path with no pos. edges *u* included if q(u) reachable by path with no neg. edges

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

 ℓ included if $q(\ell)$ reachable by path with no pos. edges *u* included if q(u) reachable by path with no neg. edges

⇒ Weighted Graph Reachability!

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

1. Computing ℓ and u 2. Checking membership of ℓ , v, u

 ℓ included if $q(\ell)$ reachable by path with no pos. edges *u* included if q(u) reachable by path with no neg. edges

$\Rightarrow Weighted Graph Reachability!$ $\Rightarrow in NC^{2}!$

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Reachability in Continuous OCA (COCA) COCA have much lower complexity

Guardless OCA: NP-complete

[Haase et al.,'09]

 \Rightarrow

Guardless COCA: in **NC**² (below P-time) Even with global guards and equality tests

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

\Rightarrow

COCA: in P-time

Parametric OCA: Decidability unknown

 \Rightarrow

Parametric COCA: NP-complete

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Reachability in Continuous OCA (COCA) COCA have much lower complexity

Guardless OCA: NP-complete

[Haase et al.,'09]

 \Rightarrow

Guardless COCA: in **NC**² (below P-time) Even with global guards and equality tests

OCA: PSPACE-complete

[Fearnley, Jurdziński, '15]

COCA: in P-time

Parametric OCA:⇒ParametricDecidability unknownNP-cc

Parametric COCA: NP-complete

More in our paper: Continuous One-Counter Automata, LICS '21

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez

Overapproximations help when reachability is **intractable**

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Overapproximations help when reachability is **intractable**

This work:

Overapproximate One-Counter Automata via Continuous One-Counter Automata

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Overapproximations help when reachability is **intractable**

This work:

Overapproximate One-Counter Automata via Continuous One-Counter Automata

Reachability sets of Continuous One-Counter Automata are **unions** of **few** intervals

 \Rightarrow tractable reachability

Michael Blondin, Tim Leys, Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Overapproximations help when reachability is **intractable**

This work:

Overapproximate One-Counter Automata via Continuous One-Counter Automata

Reachability sets of Continuous One-Counter Automata are **unions** of **few** intervals

 \Rightarrow tractable reachability

Michael Blondin, Tim Leys, Filip Mazowiecki, <u>Philip Offtermatt</u>, Guillermo Pérez