## Continuous

## One-Counter Automata

## Philip Offtermatt

Joint work with:
Michael Blondin, Tim Leys,
Filip Mazowiecki, Guillermo Pérez


## Continuous

## One-Counter Automata

## Philip Offtermatt

Joint work with:
Michael Blondin, Tim Leys,
Filip Mazowiecki, Guillermo Pérez


# Why we care about overapproximations Goal: Verify no bad state is reachable! 


initial
$\bullet$

# Why we care about overapproximations Goal: Verify no bad state is reachable! 



## Why we care about overapproximations Goal: Verify no bad state is reachable!

Bad states<br>What if Reach(initial) is impractical to compute?



## Why we care about overapproximations Goal: Verify no bad state is reachable!



Compute an Overapproximation instead!

## Overapproximations help proving safety

## Overapproximations help proving safety

# Goal: Find efficient overapproximations for models with hard reachability problems 

## Overapproximations help proving safety

## Goal: Find efficient overapproximations for models with hard reachability problems

## Overapproximations help proving safety

# Goal: Find efficient overapproximations for models with hard reachability problems models representing interesting systems 

## Overapproximations help proving safety

## Goal: Find efficient overapproximations for models with hard reachability problems models representing interesting systems

## Overapproximations help proving safety

# Goal: Find efficient overapproximations for models with hard reachability problems models representing interesting systems One-Counter Automata 

## Counter Automata



$$
(0,+1, \ldots,-1)
$$

## Counter Automata



Represent complex systems


## Counter Automata



$$
(0,+1, \ldots,-1)
$$

Represent complex systems


But Reachability is undecidable!
...even with only two counters [Minsky,'61]

Michael Blondin, Tim Leys,

## Counter Automata



Represent complex systems


But Reachability is undecidable! ...even with only two counters [Minsky,'61]
$\Rightarrow$ Restrict to One-Counter Automata!
Michael Blondin, Tim Leys,

## One-Counter Automata (OCA)



## One-Counter Automata (OCA)



Run: $q(0)$

## One-Counter Automata (OCA)



Run: $q(0) \rightarrow r_{1}(5)$
Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

## One-Counter Automata (OCA)



Run: $q(0) \rightarrow(5)$
Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

## One-Counter Automata (OCA)


$\rightarrow r_{2}(3)$
Run: $q(0) \rightarrow(5)$
Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

## One-Counter Automata (OCA)



$$
\rightarrow r_{2}(3) \rightarrow r_{2}(2)
$$

Run: $q(0) \rightarrow r(5)$
Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

## One-Counter Automata (OCA)



$$
\rightarrow r_{2}(3) \rightarrow r_{2}(2) \rightarrow p(1)
$$

Run: $q(0) \rightarrow(5)$
Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

## Variants of One-Counter Automata (OCA)

## Guardless OCA



Michael Blondin, Tim Leys,

## Variants of One-Counter Automata (OCA)

## Guardless OCA



## Parametric OCA



Michael Blondin, Tim Leys,

# Reachability in One-Counter Automata (OCA) 

 What is the state-of-the-art?Guardless OCA:<br>NP-complete<br>[Haase et al.,'09]

# Reachability in One-Counter Automata (OCA) 

 What is the state-of-the-art?Guardless OCA:<br>NP-complete<br>[Haase et al.,'09]

OCA:<br>PSPACE-complete<br>[Fearnley,Jurdziński,'15]

# Reachability in One-Counter Automata (OCA) 

 What is the state-of-the-art?Guardless OCA:<br>NP-complete<br>[Haase et al.,'09]

OCA:<br>PSPACE-complete<br>[Fearnley,Jurdziński,'15]

# Parametric OCA: <br> Decidability unknown 

# Reachability in One-Counter Automata (OCA) 

 What is the state-of-the-art?Guardless OCA:<br>NP-complete<br>[Haase et al.,'09]

OCA:


PSPACE-complete
[Fearnley,Jurdziński,'15]

# Parametric OCA: <br> Decidability unknown 

## Contributions

## Propose novel model: <br> Continuous One-Counter Automata (COCA)

Overapproximation for OCA with tractable complexity

## Contributions

## Propose novel model: <br> Continuous One-Counter Automata (COCA)

Overapproximation for OCA with tractable complexity

## Prove complexity results:

## Contributions

## Propose novel model: <br> Continuous One-Counter Automata (COCA)

Overapproximation for OCA with tractable complexity

## Prove complexity results:

Reachability in guardless COCA: In $\mathrm{NC}^{2}$

## Contributions

## Propose novel model: <br> Continuous One-Counter Automata (COCA)

Overapproximation for OCA with tractable complexity

## Prove complexity results:

Reachability in guardless COCA: In $\mathrm{NC}^{2}$

Reachability in standard COCA: In P-time

## Contributions

## Propose novel model: <br> Continuous One-Counter Automata (COCA)

Overapproximation for OCA with tractable complexity

## Prove complexity results:

Reachability in guardless COCA: In $\mathrm{NC}^{2}$

Reachability in standard COCA: In P-time

Reachability in parametric COCA:
NP-complete

## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)



## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)



Run: $q(0)$

## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)



Run: $q(0) \xrightarrow{4 / 5} r_{1}(4)$
Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)



Run: $q(0) \xrightarrow{4 / 5} r_{1}(4) \xrightarrow{1} p(5)$
Michael Blondin, Tim Leys,

## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)



Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)




## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)




## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)




## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)



Run: $q(0) \xrightarrow{\text { 4/5 }} r_{1}(4) \xrightarrow{\text { 「 }} p(5)$

## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)



How does Reach (q(0)) compare to OverReach $(\mathrm{q}(0))$ ?
Scaling factor
$-1$

$$
\beta \in(0,1]
$$



## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)




## Overapproximating One-Counter Automata Continuous One-Counter Automata (COCA)



Run: $q(0) \xrightarrow{\frac{4 / 5}{\longrightarrow}} r_{1}(4) \xrightarrow{\text { 「 }} p(5)$

# Reachability in Continuous OCA (COCA) <br> ...has much lower complexity 

# Guardless OCA: <br> NP-complete <br> [Haase et al.,'09] 

Guardless COCA:<br>in $\mathbf{N C}^{2}$ (below P-time)<br>$\Longrightarrow$

## Reachability in Continuous OCA (COCA) ...has much lower complexity

Guardless OCA:<br>NP-complete<br>[Haase et al.,'09]

OCA:
PSPACE-complete
[Fearnley,Jurdziński,'15]

# Parametric OCA: <br> Decidability unknown 

## Reachability in Continuous OCA (COCA)

...has much lower complexity

Guardless OCA:
NP-complete
[Haase et al.,'09]

## Guardless COCA: <br> in $\mathbf{N C}^{2}$ (below P-time)

OCA:
PSPACE-complete
[Fearnley,Jurdziński,'15]

## $\mathbf{N C}^{2}$ : Polynomially many random-access machines running for at most <br> $\mathrm{O}\left(\log ^{2} \mathbf{n}\right)$ steps in parallel

Parametric OCA:
Decidability unknown

## Reachability in Continuous OCA (COCA)

...has much lower complexity

## Guardless COCA: <br> in $\mathbf{N C}^{2}$ (below P-time)

OCA:
PSPACE-complete
[Fearnley,Jurdziński,'15]

## NC ${ }^{2}$ : Polynomially many random-access machines running for at most <br> $\mathrm{O}\left(\log ^{2} \mathbf{n}\right)$ steps in parallel

# Parametric OCA: <br> Decidability unknown 

## Notably:

Graph reachability $\in \mathbf{N C}^{2}$ Also for weighted graphs!

## Guardless COCA

OverReach is a single interval (with a gap)


## Guardless COCA

OverReach is a single interval (with a gap)


## Guardless COCA

OverReach is a single interval (with a gap)


## Guardless COCA

OverReach is a single interval (with a gap)


## Guardless COCA

OverReach is a single interval (with a gap)


## Guardless COCA

OverReach is a single interval (with a gap)


## Guardless COCA

OverReach is a single interval (with a gap)


## Guardless COCA

OverReach is a single interval (with a gap)


## Guardless COCA

OverReach is a single interval (with a gap)


1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

## Guardless COCA

## 1. Computing $\ell$ and $u$

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$ OverReach $(p(v))[q]:$ how do we
compute this? $\cdots(t, v) \cup(v, u) \cdots$ symmetric!

## Guardless COCA

1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v, u$


Cycle with a negative edge between $p$ and $q \Rightarrow \ell=-\infty$

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

OverReach $(p(v))[q]:$
how do we
compute this? $\cdots(\geqslant \ell, v) \cup(v, u) \cdots$ symmetric!

Cycle with a negative edge between $p$ and $q \Rightarrow \ell=-\infty$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

OverReach $(p(v))[q]:$
how do we
compute this? $\cdots(\nmid \ell, v) \cup(v, u) \cdots$ symmetric!

Cycle with a negative edge between $p$ and $q \Rightarrow \ell=-\infty$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

OverReach $(p(v))[q]:$
how do we
compute this? $\cdots(\nmid \ell) \cup(v, u) \cdots$ symmetric!

Cycle with a negative edge between $p$ and $q \Rightarrow \ell=-\infty$


> Check for each node $n$ : Is there a path from $n$ to $n$ with a negative edge?
> $\Rightarrow \in N C^{2}$

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

OverReach $(p(v))[q]:$
how do we
compute this? $\cdots(\nmid \ell) \cup(v, u) \cdots$ symmetric!

Cycle with a negative edge between $p$ and $q \Rightarrow \ell=-\infty$


Check for each node $n$ : Is there a path from $n$ to $n$ with a negative edge?


Otherwise: $\ell=v-\min$. sum of negative edges among paths $p \rightarrow q$

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$ OverReach $(\mathrm{p}(v))[q]$ : how do we
compute this? $\cdots(\nmid \ell) \cup(v, u) \cdots$ symmetric!

Cycle with a negative edge between $p$ and $q \Rightarrow \ell=-\infty$


Check for each node $n$ : Is there a path from $n$ to $n$ with a negative edge?


Otherwise: $\ell=v-$ min. sum of negative edges among paths $p \rightarrow q$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$ OverReach $(p(v))[q]:$
how do we
compute this? $\cdots(\gtrdot \ell, v) \cup(v, u) \cdots$ symmetric!

Cycle with a negative edge between $p$ and $q \Rightarrow \ell=-\infty$


Check for each node $n$ : Is there a path from $n$ to $n$ with a negative edge?


Otherwise: $\ell=v-$ min. sum of negative edges among paths $p \rightarrow q$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

$$
\text { OverReach }(p(v))[q]:
$$

how do we
compute this? $\cdots(t, v) \cup(v, u) \cdots$ symmetric!

Cycle with a negative edge between $p$ and $q \Rightarrow \ell=-\infty$


Check for each node $n$ : Is there a path from $n$ to $n$ with a negative edge?

$$
\Rightarrow \in \mathrm{NC}^{2}
$$

Otherwise: $\ell=v-\min$. sum of negative edges among paths $p \rightarrow q$


Longest path problem, but: No cycle with neg. edge

## Guardless COCA

1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v$,

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v$,


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v$,


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v$,


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v$,

$v$ is included if any path $p \rightarrow q$ has positive and negative edges

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v$,

$v$ is included if any path $p \rightarrow q$ has positive and negative edges
$\Rightarrow$ Can be checked in $\mathbf{N C}^{2}$ :
Reachability in modified copies of the underlying graph $\mathbf{C}$

## Guardless COCA

1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v$, $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability


## Guardless COCA

## 1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v$,

 $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability

Guardless COCA

1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v$, $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability


Guardless COCA

1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v$, $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability


Guardless COCA

1. Computing $l$ and $u$ 2. Checking membership of $\ell, v$, $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability


## Guardless COCA

## 1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v$,

 $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability

Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

## Guardless COCA

## 1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v$,

 $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability

Michael Blondin, Tim Leys,
Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez

Guardless COCA

1. Computing $l$ and $u$ 2. Checking membership of $\ell, v, u$ $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability


Guardless COCA

1. Computing $l$ and $u$ 2. Checking membership of $\ell, v, u$ $\Rightarrow$ Checking whether a path from $q$ to $p$ has positive and negative edges via graph reachability


## Guardless COCA

1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v, u$

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

$\ell$ included if $q(\ell)$ reachable by path with no pos. edges $u$ included if $q(u)$ reachable by path with no neg. edges

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

$\ell$ included if $q(\ell)$ reachable by path with no pos. edges $u$ included if $q(u)$ reachable by path with no neg. edges


## Guardless COCA

1. Computing $\ell$ and $u$ 2. Checking membership of $\ell, v, u$

$\ell$ included if $q(\ell)$ reachable by path with no pos. edges $u$ included if $q(u)$ reachable by path with no neg. edges


## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

$\ell$ included if $q(\ell)$ reachable by path with no pos. edges $u$ included if $q(u)$ reachable by path with no neg. edges


## $\Rightarrow$ Weighted Graph Reachability!

## Guardless COCA

1. Computing $\ell$ and $u \quad$ 2. Checking membership of $\ell, v, u$

$\ell$ included if $q(\ell)$ reachable by path with no pos. edges $u$ included if $q(u)$ reachable by path with no neg. edges

$\Rightarrow$ Weighted Graph Reachability!
$\Rightarrow$ in $\mathbf{N C}^{2}$ !
Michael Blondin, Tim Leys,

## Reachability in Continuous OCA (COCA) COCA have much lower complexity

Guardless OCA:
NP-complete
[Haase et al.,'09]

OCA:
PSPACE-complete
[Fearnley,Jurdziński,'15]

Parametric OCA:
Decidability unknown

Guardless COCA:
in $\mathbf{N C}^{2}$ (below P-time)
Even with global guards and equality tests

COCA:
in P-time

Parametric COCA:
NP-complete

## Reachability in Continuous OCA (COCA) COCA have much lower complexity

Guardless OCA:
NP-complete
[Haase et al.,'09]

## Guardless COCA:

in $\mathbf{N C}^{2}$ (below P-time)
Even with global guards and equality tests

COCA:
in P-time

Parametric OCA:
Decidability unknown

Parametric COCA:
NP-complete

## Summary

## Overapproximations help when reachability is intractable

## Summary

## Overapproximations help when reachability is intractable

## This work: <br> Overapproximate One-Counter Automata via Continuous One-Counter Automata

## Summary

Overapproximations help when reachability is intractable

## This work:

Overapproximate One-Counter Automata via Continuous One-Counter Automata

Reachability sets of Continuous One-Counter Automata are unions of few intervals
$\Rightarrow$ tractable reachability

## Summary

Overapproximations help when reachability is intractable

## This work:

Overapproximate One-Counter Automata via Continuous One-Counter Automata

Reachability sets of Continuous One-Counter Automata are unions of few intervals
$\Rightarrow$ tractable reachability


