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Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)
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Overapproximations help proving safety

Goal: Find efficient overapproximations
for models with hard reachability problems

Goal: Find efficient overapproximations
for models with hard reachability problems

models representing interesting systemsmodels representing interesting systems
One-Counter Automata

Michael Blondin, Tim Leys,

Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez Continuous One-Counter Automata 2 / 16
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Counter Automata

p1 p2

c1 = 0?
(−5, 0, . . . ,−1)

(0,+1, . . . ,−1)

Represent complex systems

But Reachability is undecidable!
...even with only two counters [Minsky,’61]

⇒ Restrict to One-Counter Automata!
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Variants of One-Counter Automata (OCA)

Guardless OCA

q

(−∞,∞)

r1

(−∞,∞)

r2

(−∞,∞)

p

(−∞,∞)

+5

+3

−1

+1

−1

Parametric OCA

q

[0,X]

r1

[Y, 4]

r2

[Y,Z]

p

(−∞,X)

−Z

+Y

−X

+1

−1

Michael Blondin, Tim Leys,

Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez Continuous One-Counter Automata 5 / 16
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Reachability in One-Counter Automata (OCA)
What is the state-of-the-art?

Guardless OCA:
NP-complete
[Haase et al.,’09]

OCA:
PSPACE-complete
[Fearnley,Jurdziński,’15]

Parametric OCA:
Decidability unknown

Our goal:
Overapproximate
OCA efficiently!
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Contributions

Propose novel model:
Continuous One-Counter Automata (COCA)
Overapproximation for OCA with tractable complexity

Prove complexity results:

Reachability in guardless COCA:
In NC2

Reachability in standard COCA:
In P-time

Reachability in parametric COCA:
NP-complete

Michael Blondin, Tim Leys,

Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez Continuous One-Counter Automata 7 / 16
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Overapproximating One-Counter Automata
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Reachability in Continuous OCA (COCA)
...has much lower complexity

Guardless OCA:
NP-complete
[Haase et al.,’09]

OCA:
PSPACE-complete
[Fearnley,Jurdziński,’15]

Parametric OCA:
Decidability unknown

Guardless COCA:
in NC2 (below P-time)⇒

NC2: Polynomially many
random-access machines

running for at most
O(log2n) steps in parallel

Notably:
Graph reachability ∈ NC2

Also for weighted graphs!
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Parametric OCA:
Decidability unknown

Guardless COCA:
in NC2 (below P-time)⇒

NC2: Polynomially many
random-access machines

running for at most
O(log2n) steps in parallel

Notably:
Graph reachability ∈ NC2

Also for weighted graphs!

Michael Blondin, Tim Leys,

Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez Continuous One-Counter Automata 9 / 16



Guardless COCA
OverReach is a single interval (with a gap)

q

r1

r2

p
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−1

{v}
(v , v + 5]

[v − 3, v)

[v − 4, v)
. . .

(−∞, v)

(−∞, v) ∪
(v , v + 6]

OverReach(q(v))[p]:
(`, v) ∪ (v , u)

+ `, v , u may be included

1. Computing ` and u 2. Checking membership of `, v , u
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Guardless COCA
OverReach is a single interval (with a gap)

q

r1

r2

p

+5

−3

−1

+1

−1
{v}

(v , v + 5]

[v − 3, v)

[v − 4, v)
. . .

(−∞, v)

(−∞, v) ∪
(v , v + 6]

OverReach(q(v))[p]:
(`, v) ∪ (v , u)

+ `, v , u may be included

1. Computing ` and u 2. Checking membership of `, v , u

Michael Blondin, Tim Leys,

Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez Continuous One-Counter Automata 10 / 16
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Guardless COCA
1. Computing ` and u 2. Checking membership of `, v , u

OverReach(p(v))[q]:

(`, v) ∪ (v , u)how do we
compute this?

symmetric!

Cycle with a negative edge
between p and q ⇒ ` = −∞

p r

s

q. . .
-1 +2

. . .

(-0.999)

Check for each node n:
Is there a path from n to n

with a negative edge?
⇒ ∈ NC2

Otherwise: ` = v− min. sum
of negative edges among

paths p → q

r

p

s

q

-1

-3 +5

-1
-2

-2.999

Longest path problem, but:
No cycle with neg. edge

⇒∈ NC2
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Guardless COCA
1. Computing ` and u 2. Checking membership of `, v , u

rp q
−2 +1

v is included if any path p → q
has positive and negative edges

⇒ Can be checked in NC2:
Reachability in modified copies of the underlying graph C
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Guardless COCA
1. Computing ` and u 2. Checking membership of `, v , u

⇒ Checking whether a path from q to p
has positive and negative edges via graph reachability

q p

+

− 0

q p

+

− 0

X+

q p

+

− 0

X

−

q p

+

− 0

X

+

X

−
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Guardless COCA
1. Computing ` and u 2. Checking membership of `, v , u

⇒ Checking whether a path from q to p
has positive and negative edges via graph reachability

q p

+

− 0

q p

+

− 0

X+

q p

+

− 0

X

−

q p

+

− 0

X

+

X

−

Michael Blondin, Tim Leys,

Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez Continuous One-Counter Automata 13 / 16
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Reachability in Continuous OCA (COCA)
COCA have much lower complexity

Guardless OCA:
NP-complete
[Haase et al.,’09]

OCA:
PSPACE-complete
[Fearnley,Jurdziński,’15]

Parametric OCA:
Decidability unknown

Guardless COCA:
in NC2 (below P-time)
Even with global guards
and equality tests

⇒

COCA:
in P-time⇒

Parametric COCA:
NP-complete

⇒

More in our paper: Continuous One-Counter Automata, LICS ’21
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Parametric OCA:
Decidability unknown

Guardless COCA:
in NC2 (below P-time)
Even with global guards
and equality tests

⇒

COCA:
in P-time⇒

Parametric COCA:
NP-complete

⇒

More in our paper: Continuous One-Counter Automata, LICS ’21
Michael Blondin, Tim Leys,

Filip Mazowiecki, Philip Offtermatt, Guillermo Pérez Continuous One-Counter Automata 15 / 16



Summary
Overapproximations help when

reachability is intractable

This work:
Overapproximate One-Counter Automata via

Continuous One-Counter Automata

Reachability sets of Continuous One-Counter Automata

are unions of few intervals

⇒ tractable reachability

Thanks for listening!
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