
Directed Reachability

for Infinite-State Systems

Michael Blondin1, Christoph Haase2, Philip Offtermatt1,3

1 Université de Sherbrooke
2 University of Oxford

3 Max Planck Institute for Software Systems

[
2020/12/14 07:20:58 (30)

]

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Directed Reachability

for Infinite-State Systems

Michael Blondin1, Christoph Haase2, Philip Offtermatt1,3

1 Université de Sherbrooke
2 University of Oxford

3 Max Planck Institute for Software Systems

[
2020/12/14 07:20:58 (30)

]
Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N
(1, 0)

(2, 0)(1, 0)(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N
(1, 0)

(2, 0)(1, 0)(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N
(1, 0)

(2, 0)(1, 0)(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)

(2, 0)

(1, 0)(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)

(2, 0)

(1, 0)(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)

(1, 0)

(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)

(1, 0)

(2, 1)(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)

(2, 1)

(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)

(2, 1)

(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)

(2, 1)

(0, 1)

p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)(2, 1)

(0, 1)
p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)(2, 1)

(0, 1)
p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)(2, 1)

(0, 1)
p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)(2, 1)

(0, 1)
p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)(2, 1)

(0, 1)
p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Petri Nets

t1

p1
t2

p2

t3

2

Places: P = {p1, p2}

Marking: P → N

(1, 0)(2, 0)(1, 0)(2, 1)

(0, 1)
p1, p2

Pre Post

Transitions: T = {t1, t2, t3} ⊆ NP × NP e.g. t2 = ((1, 0), (1, 1))

Petri nets finitely
represent infinite-state
systems:
Reachability Graphs

(0, 0)

(1, 0)

(2, 0)

(1, 1)

(2, 1)

(0, 1)
t1

t1

t3
t2

t1t2

t3

t1

(0, 1) is reachable
from (1, 0)

Witnessing run:

(1, 0)
t1−→ (2, 0)

t2−→ (2, 1)
t3−→ (0, 1)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 1 / 30

Problems for Petri Nets

Reachability: Is there a run that starts with minit

and ends with mtarget? (e.g., minit = (1, 0),mtarget = (0, 1))

Decidable [Mayr, 1980], complexity open for 40+ years

Non-elementary lower bound [Czerwiński et al., 2019]

Ackermannian upper bound [Leroux and Schmitz, 2019]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 2 / 30

Problems for Petri Nets

Reachability: Is there a run that starts with minit

and ends with mtarget? (e.g., minit = (1, 0),mtarget = (0, 1))

Decidable [Mayr, 1980], complexity open for 40+ years

Non-elementary lower bound [Czerwiński et al., 2019]

Ackermannian upper bound [Leroux and Schmitz, 2019]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 2 / 30

Problems for Petri Nets

Reachability: Is there a run that starts with minit

and ends with mtarget? (e.g., minit = (1, 0),mtarget = (0, 1))

Decidable [Mayr, 1980], complexity open for 40+ years

Non-elementary lower bound [Czerwiński et al., 2019]

Ackermannian upper bound [Leroux and Schmitz, 2019]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 2 / 30

Problems for Petri Nets

Coverability: Is there a run that starts with minit and ends with

a marking where each place has at least

as many tokens as in mtarget?

EXPSPACE-complete [Lower bound by Lipton, 1976]

[Upper bound by Rackoff, 1978]

Reduction to reachability: Add transitions that delete tokens

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 3 / 30

Problems for Petri Nets

Coverability: Is there a run that starts with minit and ends with

a marking where each place has at least

as many tokens as in mtarget?

EXPSPACE-complete [Lower bound by Lipton, 1976]

[Upper bound by Rackoff, 1978]

Reduction to reachability: Add transitions that delete tokens

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 3 / 30

Problems for Petri Nets

Coverability: Is there a run that starts with minit and ends with

a marking where each place has at least

as many tokens as in mtarget?

EXPSPACE-complete [Lower bound by Lipton, 1976]

[Upper bound by Rackoff, 1978]

Reduction to reachability: Add transitions that delete tokens

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 3 / 30

Challenge
What problem do we tackle?

• Coverability: Many competitive solvers

• Reachability: Many interesting applications, but:

Almost no tool support
in the presence of infinite state spaces!

• To show unreachability (safety), approximations can be used,
but not clear how they help for reachability

No practically efficient semi-procedures for showing

reachability in infinite-state systems

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 4 / 30

Challenge
What problem do we tackle?

• Coverability: Many competitive solvers

• Reachability: Many interesting applications, but:

Almost no tool support
in the presence of infinite state spaces!

• To show unreachability (safety), approximations can be used,
but not clear how they help for reachability

No practically efficient semi-procedures for showing

reachability in infinite-state systems

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 4 / 30

Challenge
What problem do we tackle?

• Coverability: Many competitive solvers

• Reachability: Many interesting applications, but:

Almost no tool support
in the presence of infinite state spaces!

• To show unreachability (safety), approximations can be used,
but not clear how they help for reachability

No practically efficient semi-procedures for showing

reachability in infinite-state systems

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 4 / 30

Challenge
What problem do we tackle?

• Coverability: Many competitive solvers

• Reachability: Many interesting applications, but:

Almost no tool support
in the presence of infinite state spaces!

• To show unreachability (safety), approximations can be used,
but not clear how they help for reachability

No practically efficient semi-procedures for showing

reachability in infinite-state systems

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 4 / 30

Outline

• Part I: Applications - Why is this useful?

• Part II: Approximations - Relaxing Reachability

• Part III: Directed Search - Searching with Guidance

• Part IV: Experiments - Prototype Evaluation

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 5 / 30

Part I

Applications

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1

← loc1

s = 0

← loc2

if s == 1:

← loc3

raise Err()

← Err

loc1 loc2 loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1

← loc1

s = 0

← loc2

if s == 1:

← loc3

raise Err()

← Err

loc1 loc2 loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2 loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2 loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2

loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2

loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2

loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2

loc3 Err

fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2 loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2 loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Concurrent Program Analysis

Many threads on same program

s: Shared Boolean variable
Initially, s= 0

Problem:
Can any thread reach
the error state?

def fun():

s = 1 ← loc1

s = 0 ← loc2

if s == 1: ← loc3

raise Err() ← Err

loc1 loc2 loc3 Err
fun()

s == 1 s == 0

Can there be at least one token in Err?

⇒ Coverability problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 6 / 30

Some Applications of Petri Nets
Program Synthesis [Feng et al., POPL 2017]

Synthesize a function:
Area rotate(Area area,

Point2D point,
double angle)

Use methods from the
java.awt.geom library

java.awt.geom
new AffineTrans()
double Point2D.getX()
double Point2D.getY()
void AffineTrans.

setToRotation(double, double, double)
Area Area.createTransArea(AffineTrans)

Goal: Find programs that typecheck,
chaining methods from the library

AffineTrans
new AffineTrans copyAffineTrans

2

Area

createTransArea

copyArea

2
double

setToRotation

3copydouble

2

Point2D

GetXGetY
copyPoint2D

2

⇒ Typechecking programs correspond to runs
starting with a token in Area, Point2D and double,

ending with exactly one token in Area

⇒ Reachability Problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 7 / 30

Some Applications of Petri Nets
Program Synthesis [Feng et al., POPL 2017]

Synthesize a function:
Area rotate(Area area,

Point2D point,
double angle)

Use methods from the
java.awt.geom library

java.awt.geom
new AffineTrans()
double Point2D.getX()
double Point2D.getY()
void AffineTrans.

setToRotation(double, double, double)
Area Area.createTransArea(AffineTrans)

Goal: Find programs that typecheck,
chaining methods from the library

AffineTrans
new AffineTrans copyAffineTrans

2

Area

createTransArea

copyArea

2
double

setToRotation

3copydouble

2

Point2D

GetXGetY
copyPoint2D

2

⇒ Typechecking programs correspond to runs
starting with a token in Area, Point2D and double,

ending with exactly one token in Area

⇒ Reachability Problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 7 / 30

Some Applications of Petri Nets
Program Synthesis [Feng et al., POPL 2017]

Synthesize a function:
Area rotate(Area area,

Point2D point,
double angle)

Use methods from the
java.awt.geom library

java.awt.geom
new AffineTrans()
double Point2D.getX()
double Point2D.getY()
void AffineTrans.
setToRotation(double, double, double)

Area Area.createTransArea(AffineTrans)

Goal: Find programs that typecheck,
chaining methods from the library

AffineTrans
new AffineTrans copyAffineTrans

2

Area

createTransArea

copyArea

2
double

setToRotation

3copydouble

2

Point2D

GetXGetY
copyPoint2D

2

⇒ Typechecking programs correspond to runs
starting with a token in Area, Point2D and double,

ending with exactly one token in Area

⇒ Reachability Problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 7 / 30

Some Applications of Petri Nets
Program Synthesis [Feng et al., POPL 2017]

Synthesize a function:
Area rotate(Area area,

Point2D point,
double angle)

Use methods from the
java.awt.geom library

java.awt.geom
new AffineTrans()
double Point2D.getX()
double Point2D.getY()
void AffineTrans.
setToRotation(double, double, double)

Area Area.createTransArea(AffineTrans)

Goal: Find programs that typecheck,
chaining methods from the library

AffineTrans
new AffineTrans copyAffineTrans

2

Area

createTransArea

copyArea

2
double

setToRotation

3copydouble

2

Point2D

GetXGetY
copyPoint2D

2

⇒ Typechecking programs correspond to runs
starting with a token in Area, Point2D and double,

ending with exactly one token in Area

⇒ Reachability Problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 7 / 30

Some Applications of Petri Nets
Program Synthesis [Feng et al., POPL 2017]

Synthesize a function:
Area rotate(Area area,

Point2D point,
double angle)

Use methods from the
java.awt.geom library

java.awt.geom
new AffineTrans()
double Point2D.getX()
double Point2D.getY()
void AffineTrans.
setToRotation(double, double, double)

Area Area.createTransArea(AffineTrans)

Goal: Find programs that typecheck,
chaining methods from the library

AffineTrans
new AffineTrans copyAffineTrans

2

Area

createTransArea

copyArea

2
double

setToRotation

3copydouble

2

Point2D

GetXGetY
copyPoint2D

2

⇒ Typechecking programs correspond to runs
starting with a token in Area, Point2D and double,

ending with exactly one token in Area

⇒ Reachability Problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 7 / 30

Some Applications of Petri Nets
Program Synthesis [Feng et al., POPL 2017]

Synthesize a function:
Area rotate(Area area,

Point2D point,
double angle)

Use methods from the
java.awt.geom library

java.awt.geom
new AffineTrans()
double Point2D.getX()
double Point2D.getY()
void AffineTrans.
setToRotation(double, double, double)

Area Area.createTransArea(AffineTrans)

Goal: Find programs that typecheck,
chaining methods from the library

AffineTrans
new AffineTrans copyAffineTrans

2

Area

createTransArea

copyArea

2
double

setToRotation

3copydouble

2

Point2D

GetXGetY
copyPoint2D

2

⇒ Typechecking programs correspond to runs
starting with a token in Area, Point2D and double,

ending with exactly one token in Area

⇒ Reachability Problem!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 7 / 30

Some Applications of Petri Nets
Program Synthesis [Feng et al., POPL 2017]

Synthesize a function:
Area rotate(Area area,

Point2D point,
double angle)

Use methods from the
java.awt.geom library

java.awt.geom
new AffineTrans()
double Point2D.getX()
double Point2D.getY()
void AffineTrans.
setToRotation(double, double, double)

Area Area.createTransArea(AffineTrans)

Goal: Find programs that typecheck,
chaining methods from the library

AffineTrans
new AffineTrans copyAffineTrans

2

Area

createTransArea

copyArea

2
double

setToRotation

3copydouble

2

Point2D

GetXGetY
copyPoint2D

2

⇒ Typechecking programs correspond to runs
starting with a token in Area, Point2D and double,

ending with exactly one token in Area

⇒ Reachability Problem!
Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 7 / 30

Some Applications of Petri Nets
More applications

• Scheduling

• Business Processes

• Chemical reaction networks

• . . .

Common theme: Short witnesses!

Short bug traces = easier to fix

Short synthesized programs = easier to understand

. . .

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 8 / 30

Some Applications of Petri Nets
More applications

• Scheduling

• Business Processes

• Chemical reaction networks

• . . .

Common theme: Short witnesses!

Short bug traces = easier to fix

Short synthesized programs = easier to understand

. . .

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 8 / 30

State of the Art
Coverability

• [Karp and Miller, 1967]: Karp-Miller trees

• LoLA [Wolf, 2000]: Graph-search techniques (Karp-Miller trees),

state space reductions, dedicated data structures, . . .

still in development (and winning competitions) for 20+ years

• [Abdulla et al., 2001]: Backward algorithm for WSTS,

implemented in mist [Ganty et. al, 2007]

• Bfc [Kaiser et al., 2014]: Target Set Widening/Accelerations

• QCover [Blondin et al., 2016]: Backward algorithm with pruning,

based on Continuous Petri Nets (tighter approximation)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 9 / 30

State of the Art
Coverability

• [Karp and Miller, 1967]: Karp-Miller trees

• LoLA [Wolf, 2000]: Graph-search techniques (Karp-Miller trees),

state space reductions, dedicated data structures, . . .

still in development (and winning competitions) for 20+ years

• [Abdulla et al., 2001]: Backward algorithm for WSTS,

implemented in mist [Ganty et. al, 2007]

• Bfc [Kaiser et al., 2014]: Target Set Widening/Accelerations

• QCover [Blondin et al., 2016]: Backward algorithm with pruning,

based on Continuous Petri Nets (tighter approximation)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 9 / 30

State of the Art
Coverability

• [Karp and Miller, 1967]: Karp-Miller trees

• LoLA [Wolf, 2000]: Graph-search techniques (Karp-Miller trees),

state space reductions, dedicated data structures, . . .

still in development (and winning competitions) for 20+ years

• [Abdulla et al., 2001]: Backward algorithm for WSTS,

implemented in mist [Ganty et. al, 2007]

• Bfc [Kaiser et al., 2014]: Target Set Widening/Accelerations

• QCover [Blondin et al., 2016]: Backward algorithm with pruning,

based on Continuous Petri Nets (tighter approximation)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 9 / 30

State of the Art
Coverability

• [Karp and Miller, 1967]: Karp-Miller trees

• LoLA [Wolf, 2000]: Graph-search techniques (Karp-Miller trees),

state space reductions, dedicated data structures, . . .

still in development (and winning competitions) for 20+ years

• [Abdulla et al., 2001]: Backward algorithm for WSTS,

implemented in mist [Ganty et. al, 2007]

• Bfc [Kaiser et al., 2014]: Target Set Widening/Accelerations

• QCover [Blondin et al., 2016]: Backward algorithm with pruning,

based on Continuous Petri Nets (tighter approximation)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 9 / 30

State of the Art
Coverability

• [Karp and Miller, 1967]: Karp-Miller trees

• LoLA [Wolf, 2000]: Graph-search techniques (Karp-Miller trees),

state space reductions, dedicated data structures, . . .

still in development (and winning competitions) for 20+ years

• [Abdulla et al., 2001]: Backward algorithm for WSTS,

implemented in mist [Ganty et. al, 2007]

• Bfc [Kaiser et al., 2014]: Target Set Widening/Accelerations

• QCover [Blondin et al., 2016]: Backward algorithm with pruning,

based on Continuous Petri Nets (tighter approximation)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 9 / 30

State of the Art
Reachability

• [Kosaraju, 1982]: Complete algorithm for reachability,

Ackermannian complexity

• KReach [Dixon and Lazić, 2020]: Implementation of

Kosaraju’s 1982 algorithm, works for small examples

• LoLA: Depth-first search, Random walks

• Issue: Few benchmarks for reachability with infinite state spaces

• mist: Standard benchmark suite, but almost no reachability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 10 / 30

State of the Art
Reachability

• [Kosaraju, 1982]: Complete algorithm for reachability,

Ackermannian complexity

• KReach [Dixon and Lazić, 2020]: Implementation of

Kosaraju’s 1982 algorithm, works for small examples

• LoLA: Depth-first search, Random walks

• Issue: Few benchmarks for reachability with infinite state spaces

• mist: Standard benchmark suite, but almost no reachability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 10 / 30

State of the Art
Reachability

• [Kosaraju, 1982]: Complete algorithm for reachability,

Ackermannian complexity

• KReach [Dixon and Lazić, 2020]: Implementation of

Kosaraju’s 1982 algorithm, works for small examples

• LoLA: Depth-first search, Random walks

• Issue: Few benchmarks for reachability with infinite state spaces

• mist: Standard benchmark suite, but almost no reachability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 10 / 30

State of the Art
Reachability

• [Kosaraju, 1982]: Complete algorithm for reachability,

Ackermannian complexity

• KReach [Dixon and Lazić, 2020]: Implementation of

Kosaraju’s 1982 algorithm, works for small examples

• LoLA: Depth-first search, Random walks

• Issue: Few benchmarks for reachability with infinite state spaces

• mist: Standard benchmark suite, but almost no reachability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 10 / 30

State of the Art
Reachability

• [Kosaraju, 1982]: Complete algorithm for reachability,

Ackermannian complexity

• KReach [Dixon and Lazić, 2020]: Implementation of

Kosaraju’s 1982 algorithm, works for small examples

• LoLA: Depth-first search, Random walks

• Issue: Few benchmarks for reachability with infinite state spaces

• mist: Standard benchmark suite, but almost no reachability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 10 / 30

Part II

Reachability Overapproximations

Approximations

Two sources of hardness in Petri Nets

•Token counts must be integers
•Token counts must be nonnegative

Relaxing either restriction gives us
an overapproximation of reachability

If a target is unreachable in the overapproximation,
then it is unreachable in the Petri Net!

[Esparza et al., 2014], [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 11 / 30

Approximations

Two sources of hardness in Petri Nets
•Token counts must be integers

•Token counts must be nonnegative

Relaxing either restriction gives us
an overapproximation of reachability

If a target is unreachable in the overapproximation,
then it is unreachable in the Petri Net!

[Esparza et al., 2014], [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 11 / 30

Approximations

Two sources of hardness in Petri Nets
•Token counts must be integers
•Token counts must be nonnegative

Relaxing either restriction gives us
an overapproximation of reachability

If a target is unreachable in the overapproximation,
then it is unreachable in the Petri Net!

[Esparza et al., 2014], [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 11 / 30

Approximations

Two sources of hardness in Petri Nets
•Token counts must be integers
•Token counts must be nonnegative

Relaxing either restriction gives us
an overapproximation of reachability

If a target is unreachable in the overapproximation,
then it is unreachable in the Petri Net!

[Esparza et al., 2014], [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 11 / 30

Approximations

Two sources of hardness in Petri Nets
•Token counts must be integers
•Token counts must be nonnegative

Relaxing either restriction gives us
an overapproximation of reachability

If a target is unreachable in the overapproximation,
then it is unreachable in the Petri Net!

[Esparza et al., 2014], [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 11 / 30

Approximations
Continuous Petri Nets/Continuous token counts

Allow firing transitions by a fraction β ∈ (0, 1]

Initial Marking: (1, 0, 0, 0)

(1, 0, 0, 0)
0.5t1−−→ (0.5, 0.5, 0, 0)
0.5t2−−→ (0, 0.5, 0.5, 0)
0.5t3−−→ (0, 0, 0, 1)

p2
t1

p1

t2
p3

t3

p4

2

Reachability is Ptime-complete [Fraca and Haddad, 2013]

Alternatively, expressed as a formula

in existential FO(Q,+, <) — Satisfiability Modulo Theories/SMT

SMT Solving is fast in practice, e.g., via Z3 [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 12 / 30

Approximations
Continuous Petri Nets/Continuous token counts

Allow firing transitions by a fraction β ∈ (0, 1]

Initial Marking: (1, 0, 0, 0)

(1, 0, 0, 0)
0.5t1−−→ (0.5, 0.5, 0, 0)
0.5t2−−→ (0, 0.5, 0.5, 0)
0.5t3−−→ (0, 0, 0, 1)

p2
t1

p1

t2
p3

t3

p4

2

Reachability is Ptime-complete [Fraca and Haddad, 2013]

Alternatively, expressed as a formula

in existential FO(Q,+, <) — Satisfiability Modulo Theories/SMT

SMT Solving is fast in practice, e.g., via Z3 [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 12 / 30

Approximations
Continuous Petri Nets/Continuous token counts

Allow firing transitions by a fraction β ∈ (0, 1]

Initial Marking: (1, 0, 0, 0)

(1, 0, 0, 0)

0.5t1−−→ (0.5, 0.5, 0, 0)
0.5t2−−→ (0, 0.5, 0.5, 0)
0.5t3−−→ (0, 0, 0, 1)

p2
t1

p1

t2
p3

t3

p4

2

Reachability is Ptime-complete [Fraca and Haddad, 2013]

Alternatively, expressed as a formula

in existential FO(Q,+, <) — Satisfiability Modulo Theories/SMT

SMT Solving is fast in practice, e.g., via Z3 [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 12 / 30

Approximations
Continuous Petri Nets/Continuous token counts

Allow firing transitions by a fraction β ∈ (0, 1]

Initial Marking: (1, 0, 0, 0)

(1, 0, 0, 0)
0.5t1−−→ (0.5, 0.5, 0, 0)

0.5t2−−→ (0, 0.5, 0.5, 0)
0.5t3−−→ (0, 0, 0, 1)

p2
t1

p1

t2
p3

t3

p4

2

Reachability is Ptime-complete [Fraca and Haddad, 2013]

Alternatively, expressed as a formula

in existential FO(Q,+, <) — Satisfiability Modulo Theories/SMT

SMT Solving is fast in practice, e.g., via Z3 [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 12 / 30

Approximations
Continuous Petri Nets/Continuous token counts

Allow firing transitions by a fraction β ∈ (0, 1]

Initial Marking: (1, 0, 0, 0)

(1, 0, 0, 0)
0.5t1−−→ (0.5, 0.5, 0, 0)
0.5t2−−→ (0, 0.5, 0.5, 0)

0.5t3−−→ (0, 0, 0, 1)

p2
t1

p1

t2
p3

t3

p4

2

Reachability is Ptime-complete [Fraca and Haddad, 2013]

Alternatively, expressed as a formula

in existential FO(Q,+, <) — Satisfiability Modulo Theories/SMT

SMT Solving is fast in practice, e.g., via Z3 [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 12 / 30

Approximations
Continuous Petri Nets/Continuous token counts

Allow firing transitions by a fraction β ∈ (0, 1]

Initial Marking: (1, 0, 0, 0)

(1, 0, 0, 0)
0.5t1−−→ (0.5, 0.5, 0, 0)
0.5t2−−→ (0, 0.5, 0.5, 0)
0.5t3−−→ (0, 0, 0, 1)

p2
t1

p1

t2
p3

t3

p4

2

Reachability is Ptime-complete [Fraca and Haddad, 2013]

Alternatively, expressed as a formula

in existential FO(Q,+, <) — Satisfiability Modulo Theories/SMT

SMT Solving is fast in practice, e.g., via Z3 [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 12 / 30

Approximations
Continuous Petri Nets/Continuous token counts

Allow firing transitions by a fraction β ∈ (0, 1]

Initial Marking: (1, 0, 0, 0)

(1, 0, 0, 0)
0.5t1−−→ (0.5, 0.5, 0, 0)
0.5t2−−→ (0, 0.5, 0.5, 0)
0.5t3−−→ (0, 0, 0, 1)

p2
t1

p1

t2
p3

t3

p4

2

Reachability is Ptime-complete [Fraca and Haddad, 2013]

Alternatively, expressed as a formula

in existential FO(Q,+, <) — Satisfiability Modulo Theories/SMT

SMT Solving is fast in practice, e.g., via Z3 [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 12 / 30

Approximations
Continuous Petri Nets/Continuous token counts

Allow firing transitions by a fraction β ∈ (0, 1]

Initial Marking: (1, 0, 0, 0)

(1, 0, 0, 0)
0.5t1−−→ (0.5, 0.5, 0, 0)
0.5t2−−→ (0, 0.5, 0.5, 0)
0.5t3−−→ (0, 0, 0, 1)

p2
t1

p1

t2
p3

t3

p4

2

Reachability is Ptime-complete [Fraca and Haddad, 2013]

Alternatively, expressed as a formula

in existential FO(Q,+, <) — Satisfiability Modulo Theories/SMT

SMT Solving is fast in practice, e.g., via Z3 [Blondin et al., 2016]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 12 / 30

Approximations
State Equation over N/Negative token counts

Allow firing transitions when it would yield negative tokens

Initial Marking: (1, 0, 0)
p2

t1 t2

p1 p3

2
(1, 0, 0)
t1−→ (−1, 1, 0)
t2−→ (0, 0, 1)

Reachability from (p1init, p2init, p3init) to (p1final , p2final , p3final)
if and only if ∃t1, t2 ∈ N such that:

p1final = p1init − 2 · t1 + t2

p2final = p2init + t1 − t2 ⇒ State Equation over N
p3final = p3init + t2

Solved via Integer Linear Programming (ILP)

⇒ Computable in NP.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 13 / 30

Approximations
State Equation over N/Negative token counts

Allow firing transitions when it would yield negative tokens

Initial Marking: (1, 0, 0)
p2

t1 t2

p1 p3

2
(1, 0, 0)

t1−→ (−1, 1, 0)
t2−→ (0, 0, 1)

Reachability from (p1init, p2init, p3init) to (p1final , p2final , p3final)
if and only if ∃t1, t2 ∈ N such that:

p1final = p1init − 2 · t1 + t2

p2final = p2init + t1 − t2 ⇒ State Equation over N
p3final = p3init + t2

Solved via Integer Linear Programming (ILP)

⇒ Computable in NP.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 13 / 30

Approximations
State Equation over N/Negative token counts

Allow firing transitions when it would yield negative tokens

Initial Marking: (1, 0, 0)
p2

t1 t2

p1 p3

2
(1, 0, 0)
t1−→ (−1, 1, 0)

t2−→ (0, 0, 1)

Reachability from (p1init, p2init, p3init) to (p1final , p2final , p3final)
if and only if ∃t1, t2 ∈ N such that:

p1final = p1init − 2 · t1 + t2

p2final = p2init + t1 − t2 ⇒ State Equation over N
p3final = p3init + t2

Solved via Integer Linear Programming (ILP)

⇒ Computable in NP.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 13 / 30

Approximations
State Equation over N/Negative token counts

Allow firing transitions when it would yield negative tokens

Initial Marking: (1, 0, 0)
p2

t1 t2

p1 p3

2
(1, 0, 0)
t1−→ (−1, 1, 0)
t2−→ (0, 0, 1)

Reachability from (p1init, p2init, p3init) to (p1final , p2final , p3final)
if and only if ∃t1, t2 ∈ N such that:

p1final = p1init − 2 · t1 + t2

p2final = p2init + t1 − t2 ⇒ State Equation over N
p3final = p3init + t2

Solved via Integer Linear Programming (ILP)

⇒ Computable in NP.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 13 / 30

Approximations
State Equation over N/Negative token counts

Allow firing transitions when it would yield negative tokens

Initial Marking: (1, 0, 0)
p2

t1 t2

p1 p3

2
(1, 0, 0)
t1−→ (−1, 1, 0)
t2−→ (0, 0, 1)

Reachability from (p1init, p2init, p3init) to (p1final , p2final , p3final)
if and only if ∃t1, t2 ∈ N such that:

p1final = p1init − 2 · t1 + t2

p2final = p2init + t1 − t2 ⇒ State Equation over N
p3final = p3init + t2

Solved via Integer Linear Programming (ILP)

⇒ Computable in NP.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 13 / 30

Approximations
State Equation over N/Negative token counts

Allow firing transitions when it would yield negative tokens

Initial Marking: (1, 0, 0)
p2

t1 t2

p1 p3

2
(1, 0, 0)
t1−→ (−1, 1, 0)
t2−→ (0, 0, 1)

Reachability from (p1init, p2init, p3init) to (p1final , p2final , p3final)
if and only if ∃t1, t2 ∈ N such that:

p1final = p1init − 2 · t1 + t2

p2final = p2init + t1 − t2 ⇒ State Equation over N
p3final = p3init + t2

Solved via Integer Linear Programming (ILP)

⇒ Computable in NP.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 13 / 30

Approximations
State Equation over Q/Continuous, negative token counts

Again amounts to solving the State Equation, but over Q.

Solved via Linear Programming (LP)

⇒ Computable in Ptime.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 14 / 30

Approximations
State Equation over Q/Continuous, negative token counts

Again amounts to solving the State Equation, but over Q.

Solved via Linear Programming (LP)

⇒ Computable in Ptime.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 14 / 30

Approximations
Overview

Complexity Computed Via

Petri Nets Non-elementary Kosaraju’s

Continuous Petri Nets Ptime-complete SAT/SMT

State Equation over N NP-complete Integer Lin. Prog.

State Equation over Q Ptime-complete Lin. Prog.

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 15 / 30

Part III

Directed Search Algorithms

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms

Directed Search Algorithms can handle very large graphs

Used successfully in AI, network routing, . . .

Petri Nets have (infinite) reachability graphs!

First: Refresher on Directed Search Algorithms

Afterwards: How to apply them to Petri nets

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 16 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

0

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

1

2

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

2

2

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

2

3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

3

3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

3

4

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

4

4

4

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

4

4

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

24

5

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

5

5 6

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

25 6

6

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2 6

6

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

6

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Dijkstra’s/Breadth First Search

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Dijkstra’s:
Score = Distance from Start

Start Target

2

2

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 17 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

1

4

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

4 2

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

4 3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

4

4

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

45

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

5

5

3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

5

5

2

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

5

5

1

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

5

5

0

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
Greedy Best-First Search (GBFS)

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

Greedy Best-First Search:
Score = Distance to Target

Heuristic estimation needed!

Heuristic: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

5

5

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 18 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

3

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

3

5

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

5 5

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

5

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

7

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

7

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

7

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

3

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

39

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

39

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

39

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

39

7

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
A∗

c Frontier nodes:
Next nodes to explore

Score

Closed nodes:
Nodes that were explored

Explore node with
lowest score in frontier

A∗:
Score = Distance from Start +

Distance to TargetHeuristic estimation needed!

Heuristic here: Grid-distance

Start Target

2

2

3

4

5

6

3

4

5

1

2

3

0

1

2

39

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 19 / 30

Directed Search Algorithms
Guarantees on infinite graphs (with finite branching)

If the target is reachable what guarantees do we have,
depending on the heuristic h?

Termination Shortest Path

Dijkstra 4 4

GBFS 6 6

A∗ 4 Admissible, consistent h

Admissible: h never overestimates distance to target

Consistent: If b is a successor of a, then
h(b) ≥ h(a)− c(a, b)

cost to reach b from a

a

b

target

c(a, b)

h(a)

h(b)

Can we get better guarantees for GBFS?

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 20 / 30

Directed Search Algorithms
Guarantees on infinite graphs (with finite branching)

If the target is reachable what guarantees do we have,
depending on the heuristic h?

Termination Shortest Path

Dijkstra 4 4

GBFS 6 6

A∗ 4 Admissible, consistent h

Admissible: h never overestimates distance to target

Consistent: If b is a successor of a, then
h(b) ≥ h(a)− c(a, b)

cost to reach b from a

a

b

target

c(a, b)

h(a)

h(b)

Can we get better guarantees for GBFS?

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 20 / 30

Directed Search Algorithms
Guarantees on infinite graphs (with finite branching)

If the target is reachable what guarantees do we have,
depending on the heuristic h?

Termination Shortest Path

Dijkstra 4 4

GBFS 6 6

A∗ 4 Admissible, consistent h

Admissible: h never overestimates distance to target

Consistent: If b is a successor of a, then
h(b) ≥ h(a)− c(a, b)

cost to reach b from a

a

b

target

c(a, b)

h(a)

h(b)

Can we get better guarantees for GBFS?

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 20 / 30

Directed Search Algorithms
Guarantees on infinite graphs (with finite branching)

If the target is reachable what guarantees do we have,
depending on the heuristic h?

Termination Shortest Path

Dijkstra 4 4

GBFS 6 6

A∗ 4 Admissible, consistent h

Admissible: h never overestimates distance to target

Consistent: If b is a successor of a, then
h(b) ≥ h(a)− c(a, b)

cost to reach b from a

a

b

target

c(a, b)

h(a)

h(b)

Can we get better guarantees for GBFS?

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 20 / 30

Termination for GBFS

Observation: Result from this work

GBFS terminates on infinite graphs with a reachable target

if the employed heuristic is unbounded

Unbounded heuristic:
On any infinite simple path, the heuristic reaches

arbitrarily large heuristic scores

Idea: GBFS cannot follow any infinite path forever
without making progress towards the target

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 21 / 30

Termination for GBFS

Observation: Result from this work

GBFS terminates on infinite graphs with a reachable target

if the employed heuristic is unbounded

Unbounded heuristic:
On any infinite simple path, the heuristic reaches

arbitrarily large heuristic scores

Idea: GBFS cannot follow any infinite path forever
without making progress towards the target

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 21 / 30

Termination for GBFS

Observation: Result from this work

GBFS terminates on infinite graphs with a reachable target

if the employed heuristic is unbounded

Unbounded heuristic:
On any infinite simple path, the heuristic reaches

arbitrarily large heuristic scores

Idea: GBFS cannot follow any infinite path forever
without making progress towards the target

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 21 / 30

From Overapproximations to Heuristics
How do we obtain heuristics from overapproximations?

Shortest path in approx. ≤ Shortest path in Petri net

Overapproximations only allow more behaviours!

Define happrox : For frontier node m, happrox(m) is the length of the

shortest path from m to target in the overapproximation approx

Observation: Result from this work

For any Petri net reachability overapproximation approx ,

happrox is unbounded, admissible and consistent!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 22 / 30

From Overapproximations to Heuristics
How do we obtain heuristics from overapproximations?

Shortest path in approx. ≤ Shortest path in Petri net

Overapproximations only allow more behaviours!

Define happrox : For frontier node m, happrox(m) is the length of the

shortest path from m to target in the overapproximation approx

Observation: Result from this work

For any Petri net reachability overapproximation approx ,

happrox is unbounded, admissible and consistent!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 22 / 30

From Overapproximations to Heuristics
How do we obtain heuristics from overapproximations?

Shortest path in approx. ≤ Shortest path in Petri net

Overapproximations only allow more behaviours!

Define happrox : For frontier node m, happrox(m) is the length of the

shortest path from m to target in the overapproximation approx

Observation: Result from this work

For any Petri net reachability overapproximation approx ,

happrox is unbounded, admissible and consistent!

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 22 / 30

Applying Directed Search to Petri Nets

• Key insight: Modern ILP/SMT solvers allow computing

shortest paths for reachability overapproximations fast

⇒ ILP/SMT allow optimization of solutions

• Directed search based on reachability overapproximations

gives formal guarantees:

Shortest path (A∗), Termination (GBFS)

• Highly efficient in practice ⇒ rest of the talk

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 23 / 30

Part IV

Experimental Results

Experimental Results
Prototype implemented in C#,
Gurobi for (integer) linear programming,
Z3 for SAT/SMT

Reachability benchmarks: program synthesis,
random walks on nets from program analysis

Focus is on reachable instances
(but exploratory results confirm known effectiveness
of approximations for unreachable instances)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 24 / 30

Experimental Results
Prototype implemented in C#,
Gurobi for (integer) linear programming,
Z3 for SAT/SMT

Reachability benchmarks: program synthesis,
random walks on nets from program analysis

Focus is on reachable instances
(but exploratory results confirm known effectiveness
of approximations for unreachable instances)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 24 / 30

Experimental Results
Prototype implemented in C#,
Gurobi for (integer) linear programming,
Z3 for SAT/SMT

Reachability benchmarks: program synthesis,
random walks on nets from program analysis

Focus is on reachable instances
(but exploratory results confirm known effectiveness
of approximations for unreachable instances)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 24 / 30

Experimental Results: Reachability
Program Analysis Program Synthesis

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

4/127

123/127

10/127

2/127
0/127

seconds

#
de

ci
de

d

0.1 0.5 1.5 5 15 60
0

5

10

15

20

25

30

27/30

28/30

21/30

8/30

0/30

seconds
#

de
ci

de
d

A∗+ State Equation(Q) GBFS + State Equation(Q) Dijkstra
LoLA KReach

Guided Search outperforms existing approaches

(by orders of magnitude)
Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 25 / 30

Experimental Results: Coverability
Even competitive against dedicated coverability solvers

Program Analysis

0.1 0.5 1.5 5 15 60
0

10

20

30

40

50

60

34/61

57/61

46/61

59/61

50/61

36/61

31/61

0/61

time t in seconds

nu
m

b
er

of
in

st
an

ce
s

de
ci

de
d

in
≤

t
se

co
nd

s

A∗+ State Equation(Q) GBFS + State Equation(Q)
Dijkstra LoLA

Bfc KReach
ICover mist

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 26 / 30

Experimental Results
What about the other approximations?

• State Equation over N slightly worse performance than over Q

• Continuous Petri Nets are much slower (Gurobi vs Z3),
extra accuracy does not outweigh slowdown

• Much more accurate than previously considered ad-hoc heuristics

1 10

1

10

50

50

shortest path length

in
it

ia
l

he
ur

is
ti

c
va

lu
e

State Equation(N)
State Equation(Q)

Continuous Petri Nets
Syntactic Distance

[Strazny, 2014]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 27 / 30

Experimental Results
What about the other approximations?

• State Equation over N slightly worse performance than over Q
• Continuous Petri Nets are much slower (Gurobi vs Z3),

extra accuracy does not outweigh slowdown

• Much more accurate than previously considered ad-hoc heuristics

1 10

1

10

50

50

shortest path length

in
it

ia
l

he
ur

is
ti

c
va

lu
e

State Equation(N)
State Equation(Q)

Continuous Petri Nets
Syntactic Distance

[Strazny, 2014]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 27 / 30

Experimental Results
What about the other approximations?

• State Equation over N slightly worse performance than over Q
• Continuous Petri Nets are much slower (Gurobi vs Z3),

extra accuracy does not outweigh slowdown

• Much more accurate than previously considered ad-hoc heuristics

1 10

1

10

50

50

shortest path length

in
it

ia
l

he
ur

is
ti

c
va

lu
e

State Equation(N)
State Equation(Q)

Continuous Petri Nets
Syntactic Distance

[Strazny, 2014]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 27 / 30

Experimental Results
What about the other approximations?

• State Equation over N slightly worse performance than over Q
• Continuous Petri Nets are much slower (Gurobi vs Z3),

extra accuracy does not outweigh slowdown

• Much more accurate than previously considered ad-hoc heuristics

1 10

1

10

50

50

shortest path length

in
it

ia
l

he
ur

is
ti

c
va

lu
e

State Equation(N)
State Equation(Q)

Continuous Petri Nets
Syntactic Distance

[Strazny, 2014]

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 27 / 30

Experimental Results: Witness Length
• Caveat: Some approaches do not guarantee shortest paths

0 5 10 15 20 25 30 35 40 45 50

0
1
2

4

8

16

32

64

length of the shortest witness

di
ff

er
en

ce
w

it
h

ex
ac

t
di

st
an

ce

GBFS + State Equation(Q) LoLA Bfc

• A∗ is competitive against Bfc and much faster than LoLA
while guaranteeing a shortest path

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 28 / 30

Experimental Results: Witness Length
• Caveat: Some approaches do not guarantee shortest paths

0 5 10 15 20 25 30 35 40 45 50

0
1
2

4

8

16

32

64

length of the shortest witness

di
ff

er
en

ce
w

it
h

ex
ac

t
di

st
an

ce

GBFS + State Equation(Q) LoLA Bfc

• A∗ is competitive against Bfc and much faster than LoLA
while guaranteeing a shortest path

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 28 / 30

Experimental Results: Witness Length
• Caveat: Some approaches do not guarantee shortest paths

0 5 10 15 20 25 30 35 40 45 50

0
1
2

4

8

16

32

64

length of the shortest witness

di
ff

er
en

ce
w

it
h

ex
ac

t
di

st
an

ce

GBFS + State Equation(Q) LoLA Bfc

• A∗ is competitive against Bfc and much faster than LoLA
while guaranteeing a shortest path

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 28 / 30

Conclusion
Challenge:

No practically efficient semi-procedures for showing

reachability in infinite-state systems

• Provide a tool handling large examples in practice,

which outperforms the state-of-the-art by orders of magnitude

• Key insight: Petri Nets have easy-to-compute approximations

. . . that are surprisingly accurate

• Typically used for showing unreachability. . .

. . . but we show they can be adapted for directed search

• Directed search using these approximations is efficient

. . . even against domain specific solvers for coverability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 29 / 30

Conclusion
Challenge:

No practically efficient semi-procedures for showing

reachability in infinite-state systems

• Provide a tool handling large examples in practice,

which outperforms the state-of-the-art by orders of magnitude

• Key insight: Petri Nets have easy-to-compute approximations

. . . that are surprisingly accurate

• Typically used for showing unreachability. . .

. . . but we show they can be adapted for directed search

• Directed search using these approximations is efficient

. . . even against domain specific solvers for coverability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 29 / 30

Conclusion
Challenge:

No practically efficient semi-procedures for showing

reachability in infinite-state systems

• Provide a tool handling large examples in practice,

which outperforms the state-of-the-art by orders of magnitude

• Key insight: Petri Nets have easy-to-compute approximations

. . . that are surprisingly accurate

• Typically used for showing unreachability. . .

. . . but we show they can be adapted for directed search

• Directed search using these approximations is efficient

. . . even against domain specific solvers for coverability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 29 / 30

Conclusion
Challenge:

No practically efficient semi-procedures for showing

reachability in infinite-state systems

• Provide a tool handling large examples in practice,

which outperforms the state-of-the-art by orders of magnitude

• Key insight: Petri Nets have easy-to-compute approximations

. . . that are surprisingly accurate

• Typically used for showing unreachability. . .

. . . but we show they can be adapted for directed search

• Directed search using these approximations is efficient

. . . even against domain specific solvers for coverability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 29 / 30

Conclusion
Challenge:

No practically efficient semi-procedures for showing

reachability in infinite-state systems

• Provide a tool handling large examples in practice,

which outperforms the state-of-the-art by orders of magnitude

• Key insight: Petri Nets have easy-to-compute approximations

. . . that are surprisingly accurate

• Typically used for showing unreachability. . .

. . . but we show they can be adapted for directed search

• Directed search using these approximations is efficient

. . . even against domain specific solvers for coverability

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 29 / 30

Outlook
• Extension to directed model checking:

For example, finding cycles with conditions (for LTL, . . .)

• Representing overapproximations concisely

• Classes of Petri Nets with guarantees on heuristic accuracy

• Applying directed search to (undecidable) extensions

(Transfer nets, reset nets, colored nets, . . .)

Michael Blondin, Christoph Haase, Philip Offtermatt Directed Reachability for Infinite-State Systems 30 / 30

