The complexity of soundness in workflow nets

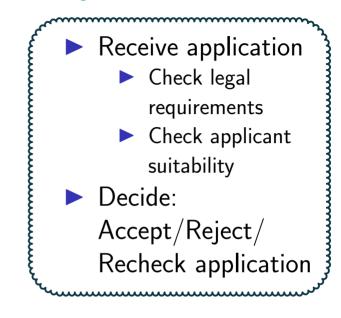
Philip Offtermatt

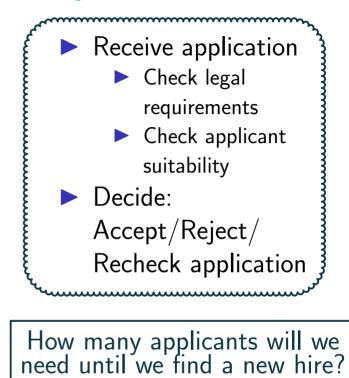
Joint work with Michael Blondin and Filip Mazowiecki

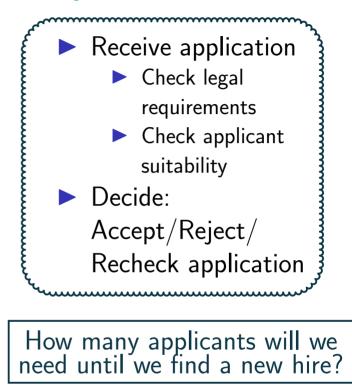
The complexity of soundness in workflow nets

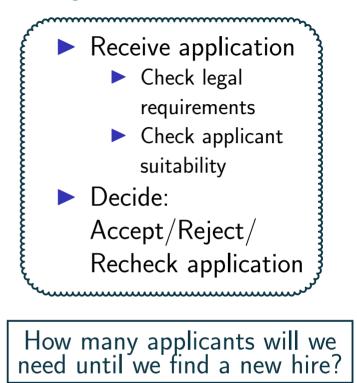
Philip Offtermatt

Joint work with Michael Blondin and Filip Mazowiecki

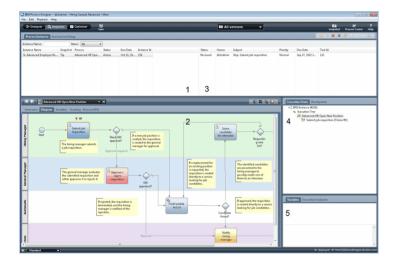



[2022/11/13 12:41:41 (34)]





Can we handle applications faster?



Can we handle applications faster?

Will every applicant hear back from us?

Modelled by humans...

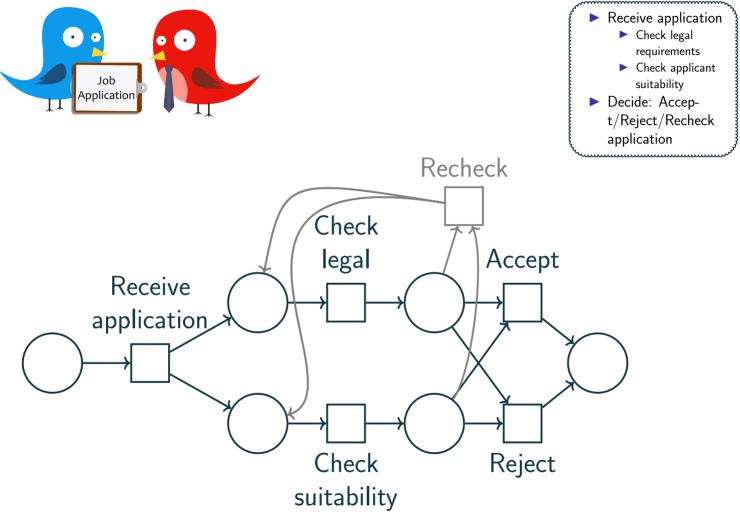
2 / 34

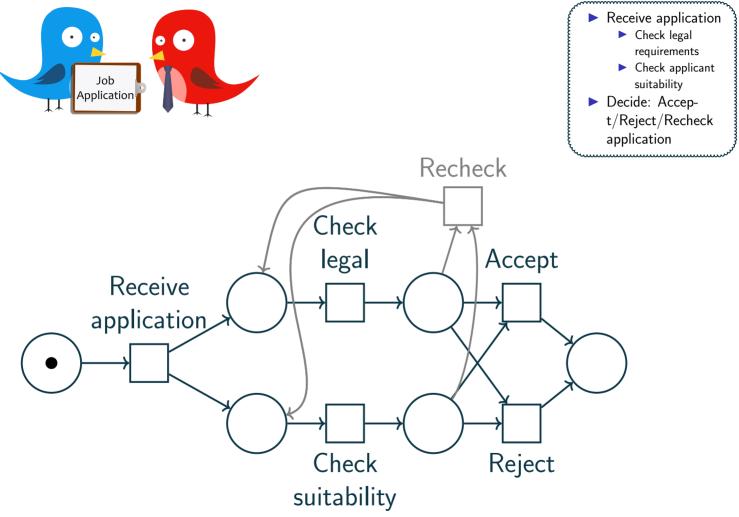
Modelled by humans...

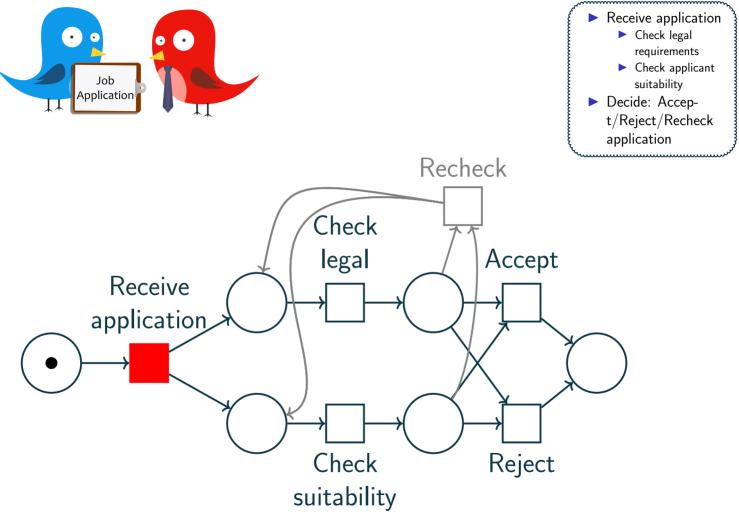
...or mined from logs

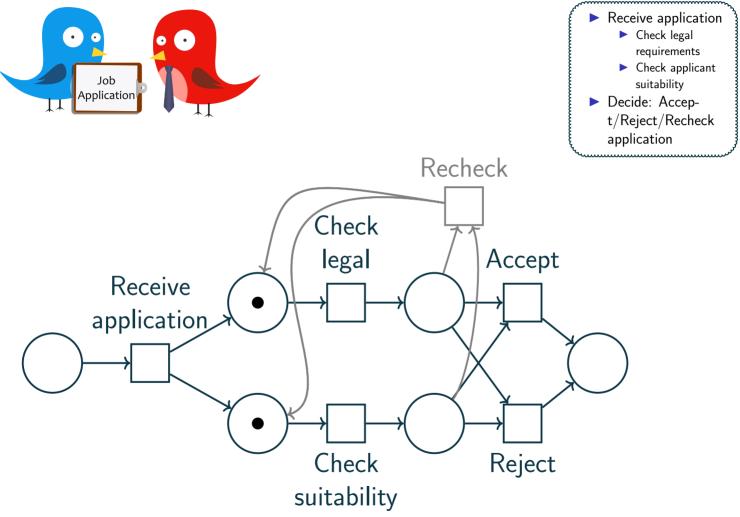
De Designers - Q, Insp	ector 🔽 Optimizer						I All	rersions 👻			Sna	pshot Process Center
Process Instances Serv	ices in Debug				_	_			_		00 (P) 8	■ X & S & S & O :
itance Name:	Status: All	•										
stance Name	Snapshot Process	Status Due I				Status	Owner	Subject	Priority	Due Date	Tesk.Id	
Advanced Employee Re	Tip Advanced HR Ope	Active Oct 1	1, 28 158			Received	db/admin	Step: Submit job requisition	Normal	Sep 27, 2012 1	iu	
					1	3						
	R Open New Position •	×	_	_	-	-	-	a 🛛 🎍 🕻		ution State Brok BPD Instance (#158		
Sant -	The bining manager submits ajob requisition.	Need GM approval Approval requires Approval requires		tion reral	an exis is require require directh	lacement for ting position sted, the tion is routed y to a service g for job	Select candidab for intervis	Repetting rear list	*			
	te	rejected, the nequisiti ministed, and the his anager is notified of t jection.	na	FindCandd	candid	abes.	Candidate found?	If approved, the requisition is nosted directly to a service looking for job candidates.	5	ables Execution 1	in alcator	
			Rejected				Notify					

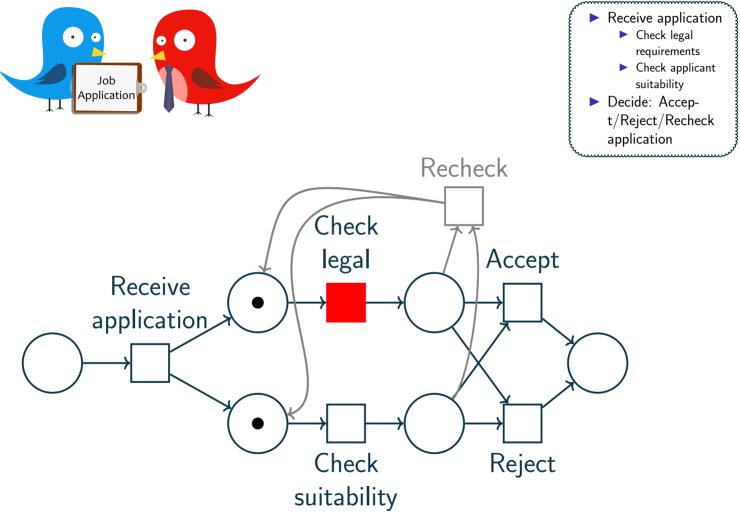
Case ID	Task Name	Resource	Date	Time
1	Receive Application	Peter	04/12/2020	06:37:11
1	Check legal requirements	Anne	05/12/2020	19:21:54
2	Receive Application	Peter	05/12/2020	02:04:19
3	Receive Application	Peter	06/12/2020	11:27:20
1	Check applicant suitability	Eva	06/12/2020	11:25:53
4	Receive Application	Peter	06/12/2020	14:18:20
5	Receive Application	Peter	07/12/2020	12:54:57
2	Check applicant suitability	Eva	08/12/2020	17:20:30
1	Accept	Eva	08/12/2020	06:45:23
3	Check legal requirements	Anne	08/12/2020	06:36:26
4	Check applicant suitability	Eva	16/12/2020	00:21:57
2	Check legal requirements	Anne	16/12/2020	09:03:05
2	Recheck Application	Chris	18/12/2020	19:44:24
2	Check legal requirements	Anne	19/12/2020	20:26:55
4	Check legal requirements	Anne	19/12/2020	17:38:49
4	Reject	Chris	20/12/2020	09:37:59
3	Check applicant suitability	Anne	20/12/2020	01:32:44
2	Check applicant suitability	Peter	27/12/2020	03:35:57
3	Accept	Eva	29/12/2020	17:18:55
2	Reject	Peter	29/12/2020	03:48:06
5	Check legal requirements	Anne	29/12/2020	03:37:39

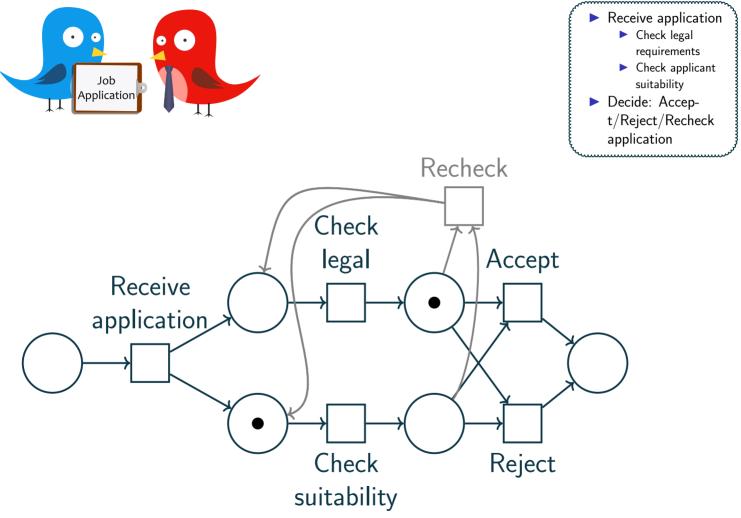

Modelled by humans...

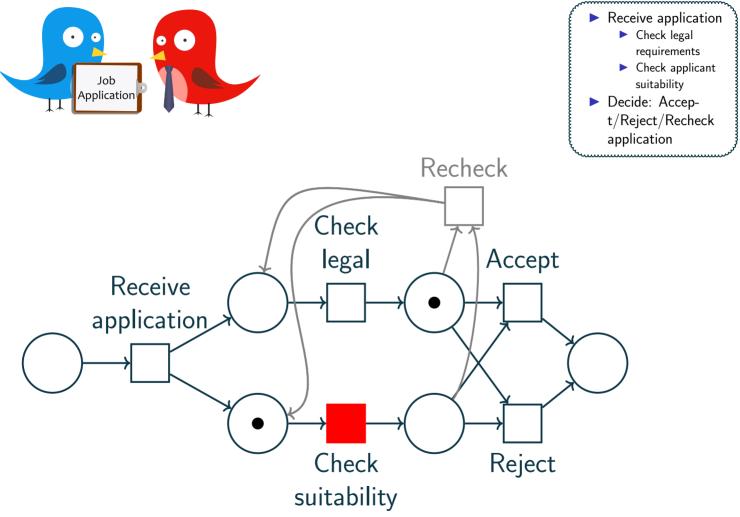

...or mined from logs

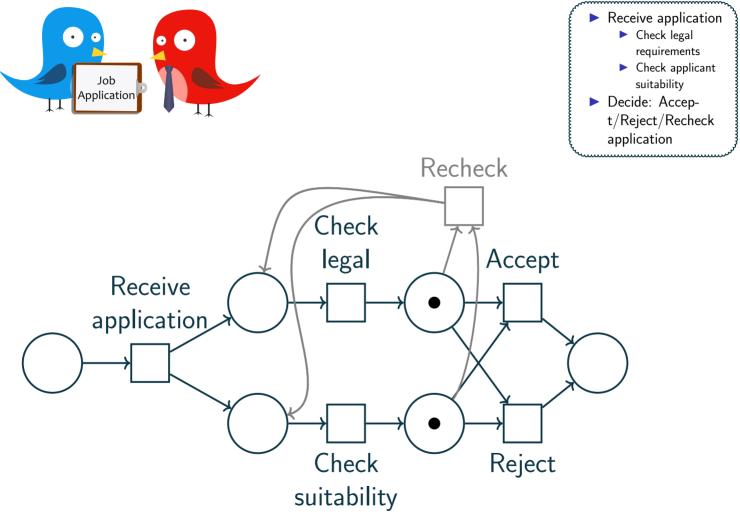

De Designer Q Ins		-						D AI V	ersions 👻	_			Process Center He
Process Instances See	rices in Debug											0 P 8 X 4	9 8 8 0 9
otance Name:	Status: All												
sstance Name	Snapshot Process	Status	Due Date	Instance Id			Status	Owner	Subject	Priority	Due Date	Tesk.Id	
Advanced Employee Re.	Tip Advanced HR Ope	Active	0rt 11, 28	154			Received	dsJadmin	Step: Submit job requisition	Normal	Sep 27, 2012 L.	111	
						1	3						
	HR Open New Position •	×				-	-	-	6 2 4 0		sution State Rice BPD Instance 01158		
Jan San	P R Solensk job	Need approval	val2 cre is r mi	newjab pasition i eted, the requisitio suted to the generi nager for approval		2		B Select candidate for intervie	Requestion g new list?	4	TV Subert	iob requisition (Token #	21
General Manager	The general manager evaluates the submitted requisition and either approves it or rejects it.	10	nove / Act officer	et approved?		an exist is requisit firectly	acement for ing position inted, the ion is routed to a service (for job ates.		The identified candidates are preserved to the hiring manager to possibly under an of them to an inteniew.				
Automatic	te	rejected, the minated, en lanager is not jection.	the hiring		FindCandida	-		Candidate feund?	If approved, the requisition is routed directly to a service looking for job candidates.	5	ables Execution	Evaluator	
								Notify					

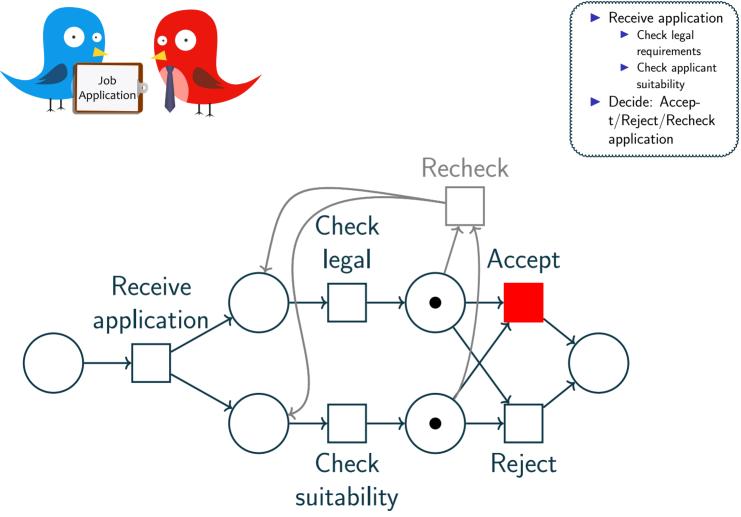

Case ID	Task Name	Resource	Date	Time
1	Receive Application	Peter	04/12/2020	06:37:11
1	Check legal requirements	Anne	05/12/2020	19:21:54
2	Receive Application	Peter	05/12/2020	02:04:19
3	Receive Application	Peter	06/12/2020	11:27:20
1	Check applicant suitability	Eva	06/12/2020	11:25:53
4	Receive Application	Peter	06/12/2020	14:18:20
5	Receive Application	Peter	07/12/2020	12:54:57
2	Check applicant suitability	Eva	08/12/2020	17:20:30
1	Accept	Eva	08/12/2020	06:45:23
3	Check legal requirements	Anne	08/12/2020	06:36:26
4	Check applicant suitability	Eva	16/12/2020	00:21:57
2	Check legal requirements	Anne	16/12/2020	09:03:05
2	Recheck Application	Chris	18/12/2020	19:44:24
2	Check legal requirements	Anne	19/12/2020	20:26:55
4	Check legal requirements	Anne	19/12/2020	17:38:49
4	Reject	Chris	20/12/2020	09:37:59
3	Check applicant suitability	Anne	20/12/2020	01:32:44
2	Check applicant suitability	Peter	27/12/2020	03:35:57
3	Accept	Eva	29/12/2020	17:18:55
2	Reject	Peter	29/12/2020	03:48:06
5	Check legal requirements	Anne	29/12/2020	03:37:39

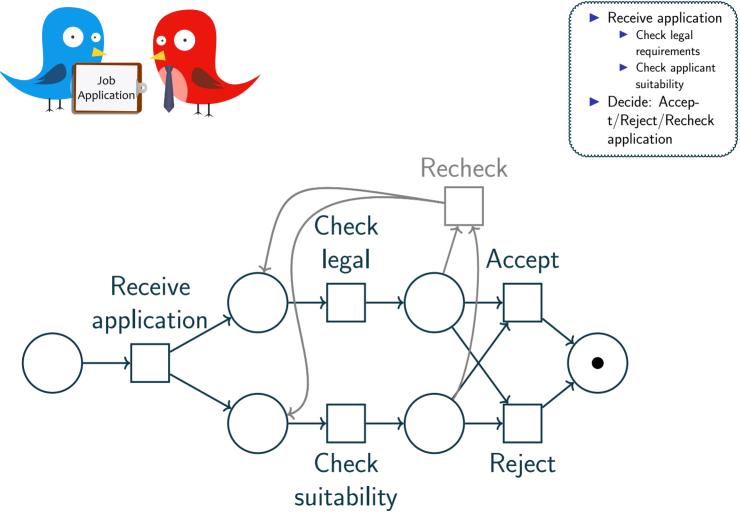

How can we formally reason about processes?

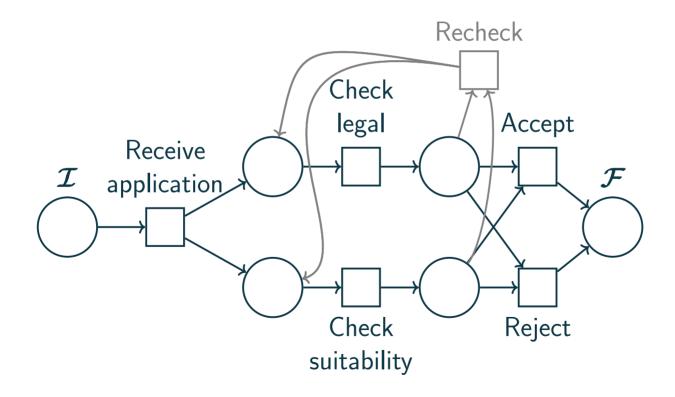


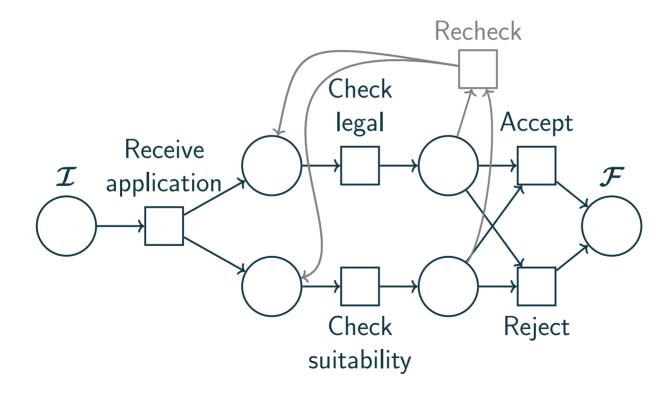


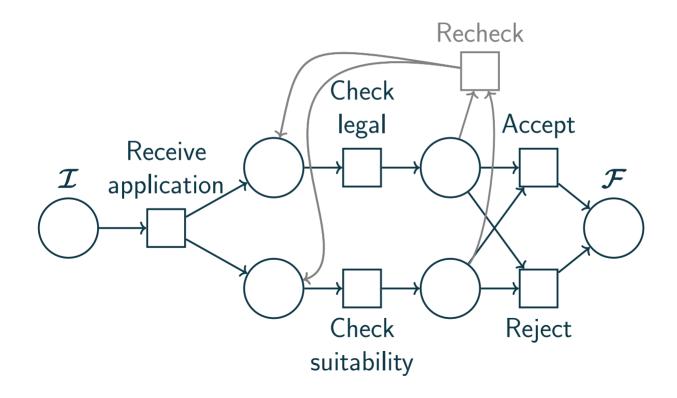


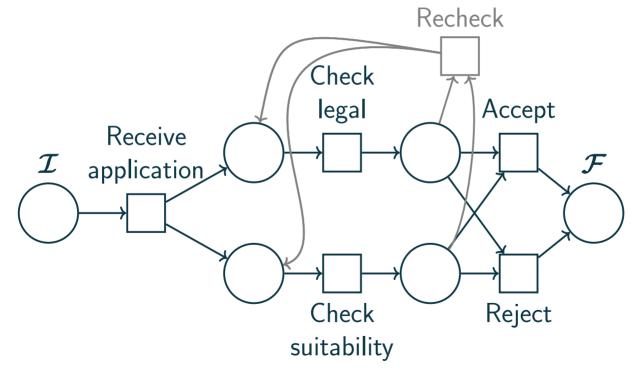


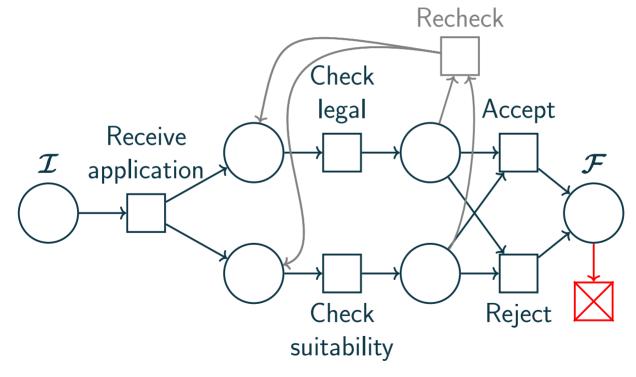


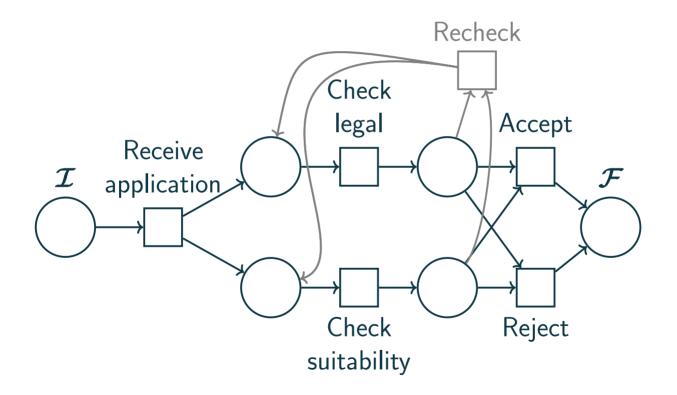




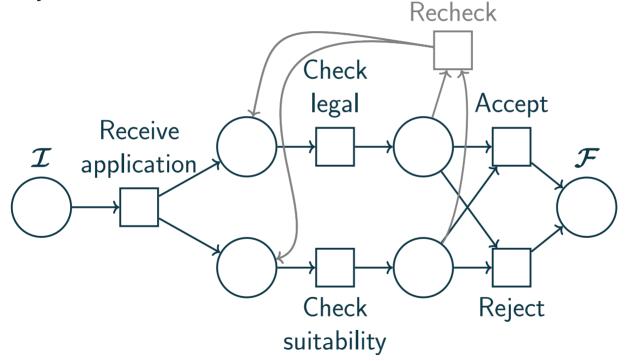


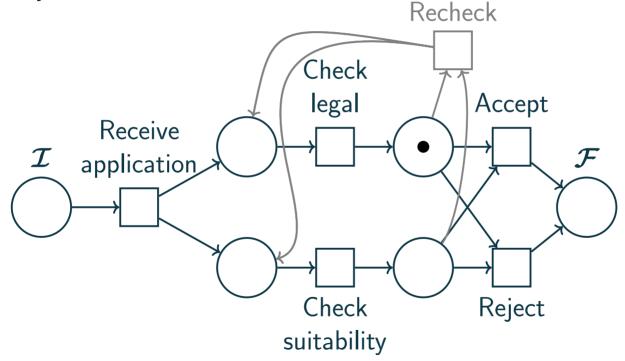

Formally: Petri nets of a specific shape 1. ${\cal I}$ has no incoming arcs


- $1.\,\mathcal{I}$ has no incoming arcs
- $2.\,\mathcal{F}$ has no outgoing arcs

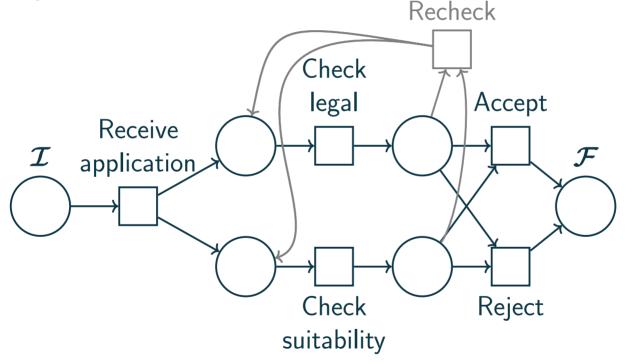


- $1.\,\mathcal{I}$ has no incoming arcs
- $2.\,\mathcal{F}$ has no outgoing arcs
- 3. All transitions are on a path from ${\mathcal I}$ to ${\mathcal F}$

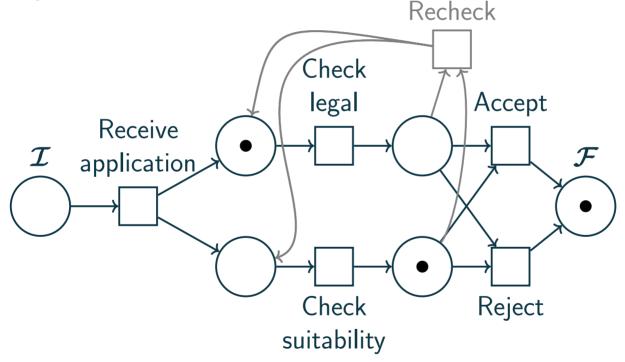

- $1.\,\mathcal{I}$ has no incoming arcs
- $2.\,\mathcal{F}$ has no outgoing arcs
- 3. All transitions are on a path from ${\mathcal I}$ to ${\mathcal F}$


Option to complete:

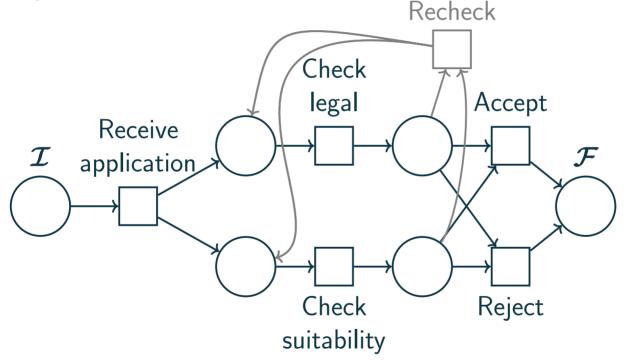
We should be able to reach a a marking that has tokens only in \mathcal{F}


Option to complete:

We should be able to reach a a marking that has tokens only in \mathcal{F}


Option to complete: We should be able to reach a a marking that has tokens only in \mathcal{F}

Proper completion: When \mathcal{F} is marked the rest of the net is empty


Option to complete: We should be able to reach a a marking that has tokens only in \mathcal{F}

Proper completion: When \mathcal{F} is marked the rest of the net is empty

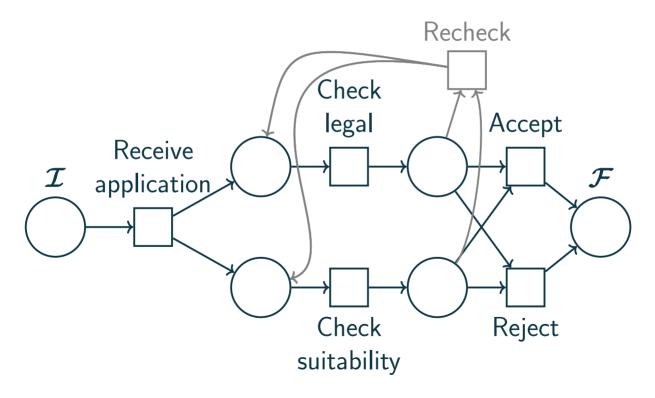
Option to complete: We should be able to reach a a marking that has tokens only in \mathcal{F}

Proper completion: When \mathcal{F} is marked the rest of the net is empty

Can we condense these into a single condition?

Philip Offtermatt

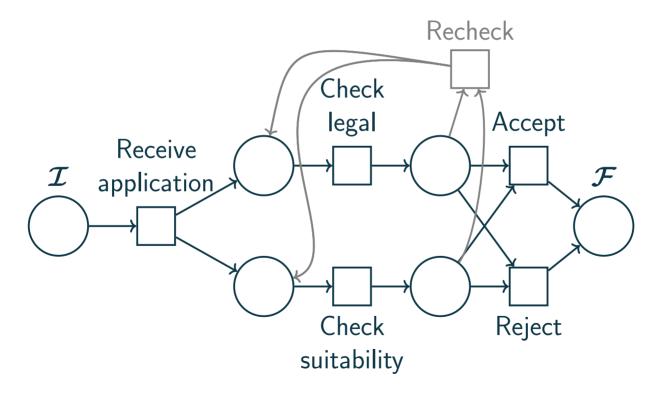
The complexity of soundness in workflow nets


A concise correctness condition

Soundness:

From any marking reachable from $\{\mathcal{I}: 1\}$, the final marking $\{\mathcal{F}: 1\}$ can be reached

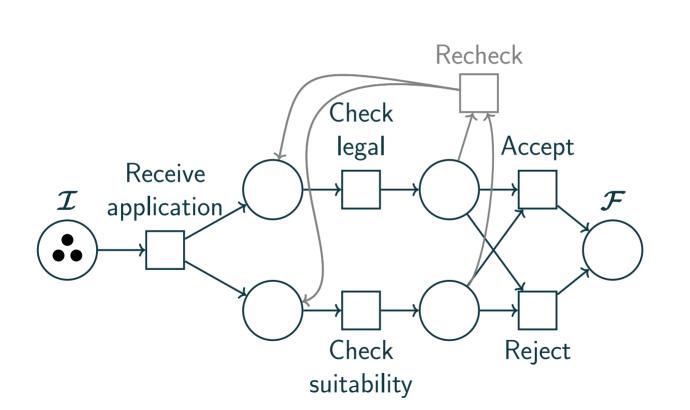
 $\forall \mathsf{ runs } \pi \exists \mathsf{ run } \pi' : \{ \mathcal{I} \colon 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} \colon 1 \}$


A concise correctness condition

Soundness:

From any marking reachable from $\{\mathcal{I}: 1\}$, the final marking $\{\mathcal{F}: 1\}$ can be reached

 $\forall \text{ runs } \pi \exists \text{ run } \pi' : \{ \mathcal{I} \colon 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} \colon 1 \}$



Extending soundness

k-soundness:

From any marking reachable from $\{\mathcal{I}: \mathbf{k}\}$, the final marking $\{\mathcal{F}: \mathbf{k}\}$ can be reached

 $\mathbf{\cdot}$

Job Application •••

•••

Variants of soundness

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Variants of soundness

k-soundness:

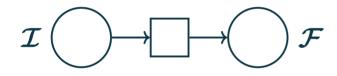
From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: ∀*k*: *k*-sound

8 / 34

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

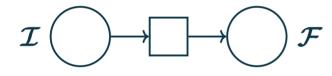

Generalised soundness: $\forall k: k$ -sound Structural soundness: $\exists k: k$ -sound

8 / 34

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: $\forall k: k$ -sound **Structural soundness:** ∃*k*: *k*-sound

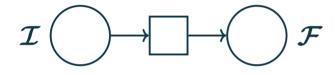

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: $\forall k: k$ -sound

Structural soundness: $\exists k: k$ -sound

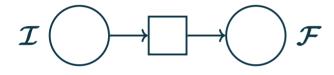
8 / 34

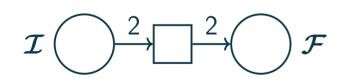


k-soundness:

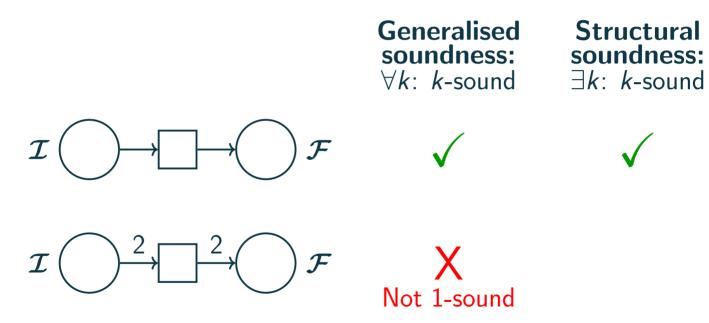
From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: $\forall k: k$ -sound

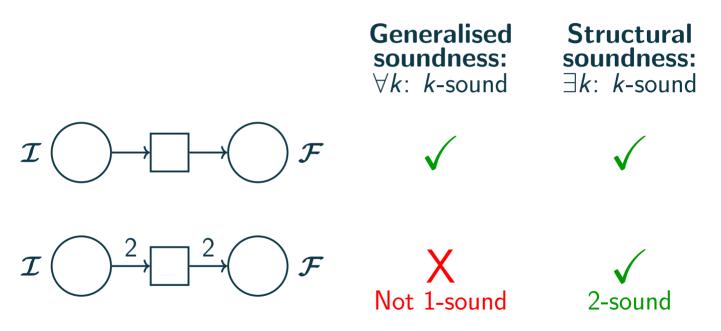


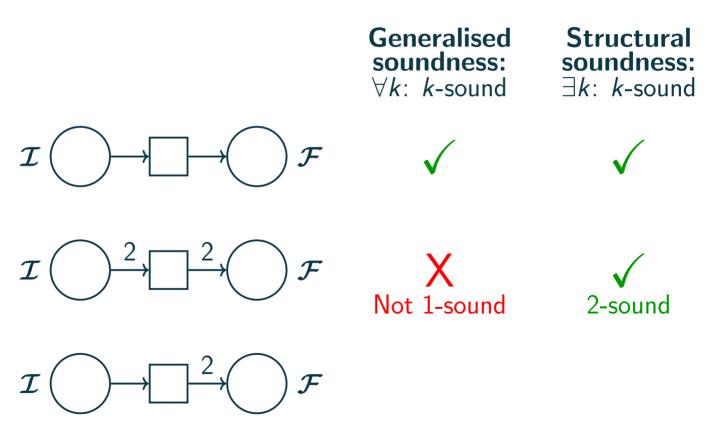


k-soundness:

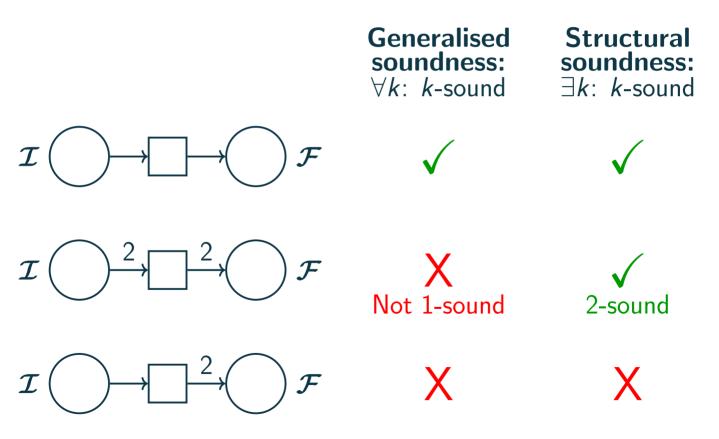

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

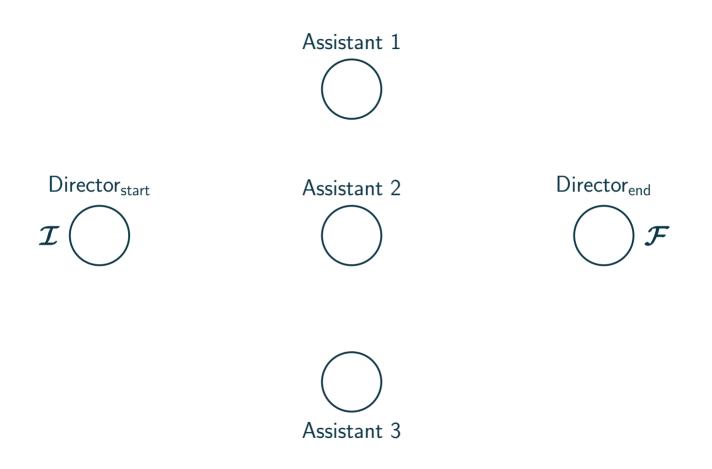
Generalised soundness: ∀*k*: *k*-sound Structural soundness: $\exists k: k$ -sound

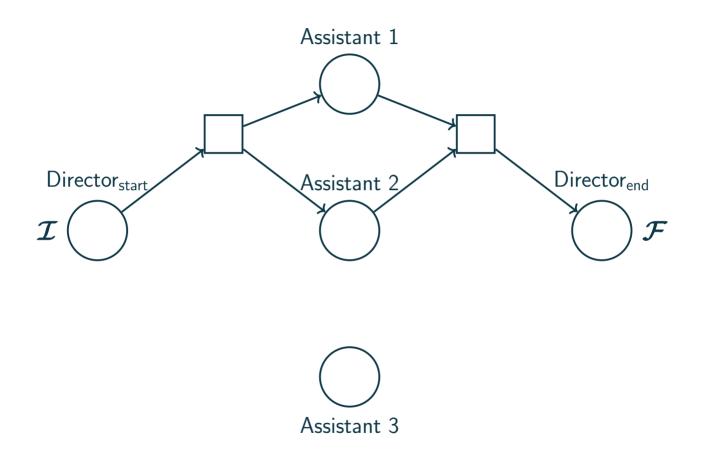


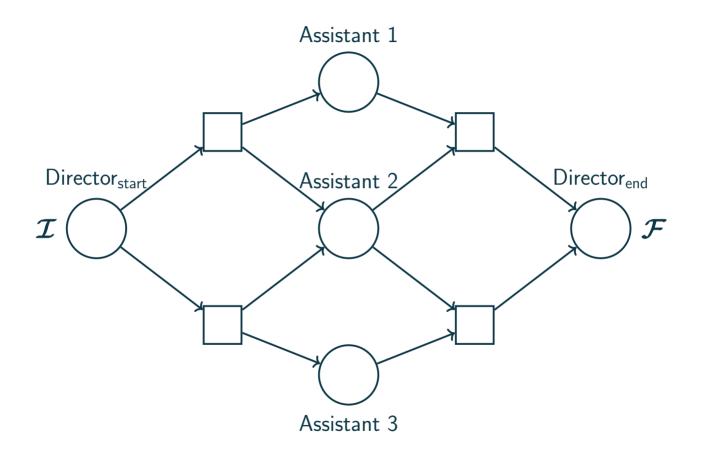

k-soundness:

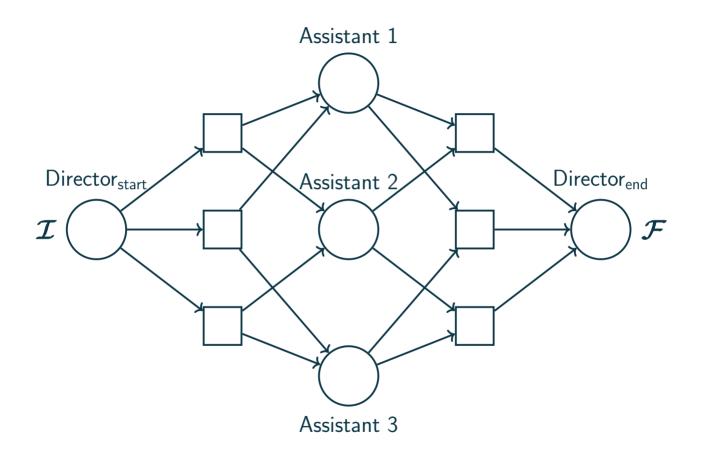

k-soundness:

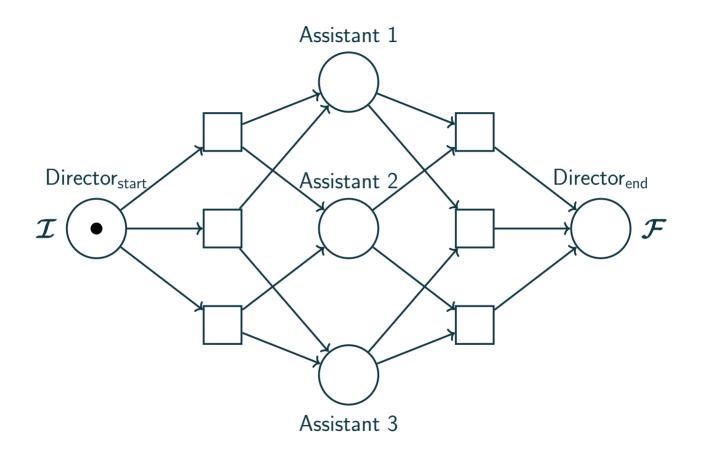

k-soundness:

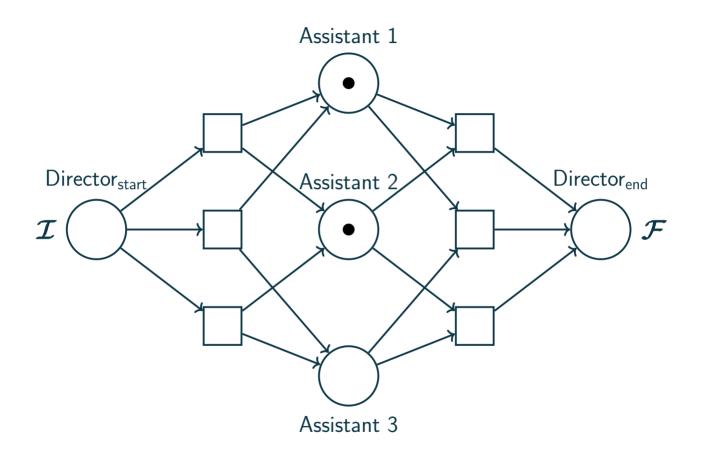


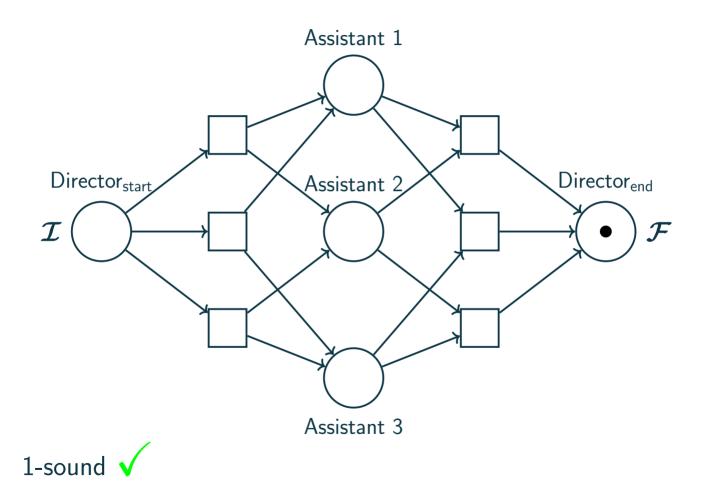

k-soundness:

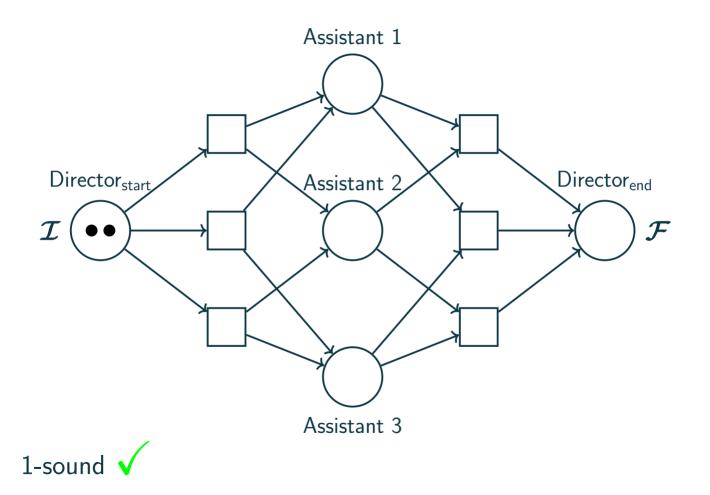


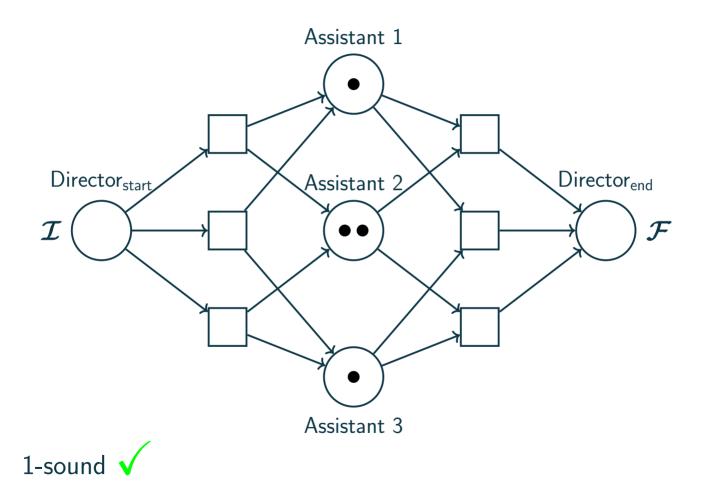

k-soundness:

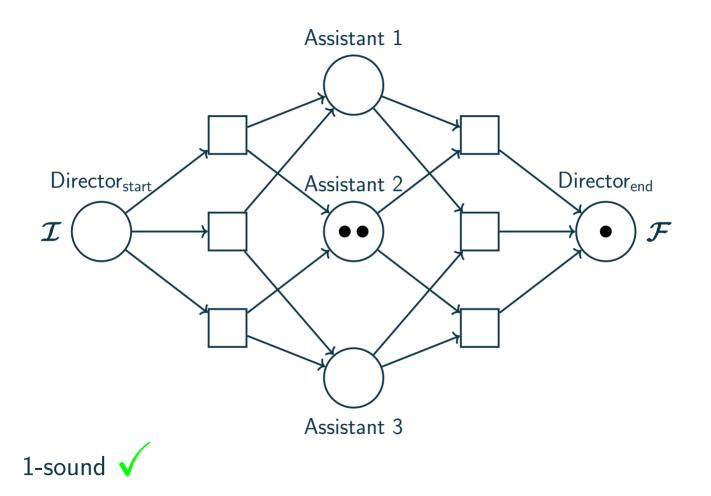




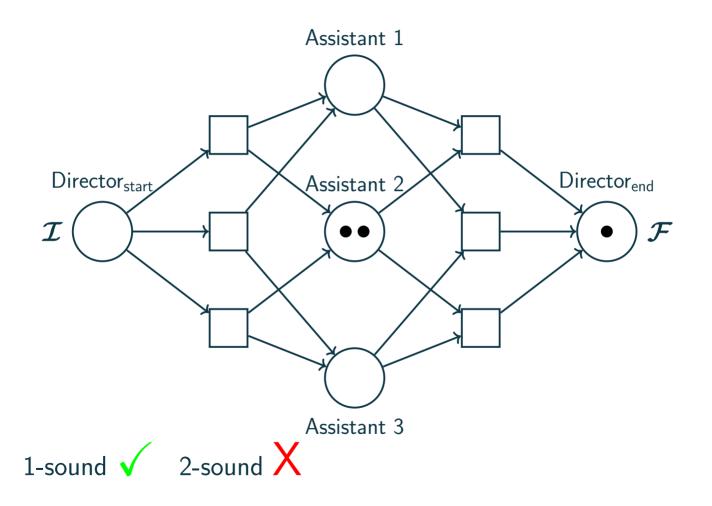








9 / 34



9 / 34

	known results	our work
<i>k</i> -Soundness		
Generalised Soundness		
Structural Soundness		

	known results	our work
	Decidable	
<i>k</i> -Soundness	EXPSPACE-hard?	
	[van der Aalst;'96, '97]	
Generalised		
Soundness		
Structural Soundness		

	known results	our work
	Decidable	
<i>k</i> -Soundness	EXPSPACE-hard?	
	[van der Aalst;'96, '97]	
Generalised	Decidable	
Soundness	[van Hee et al.;'04]	
Structural Soundness		

	known results	our work
	Decidable	
<i>k</i> -Soundness	EXPSPACE-hard?	
	[van der Aalst;'96, '97]	
Generalised	Decidable	
Soundness	[van Hee et al.;'04]	
Structural	Decidable	
Soundness	[Țiplea, Marinescu;'04]	

	known results	our work
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised Soundness	Decidable [van Hee et al.;'04]	
Structural Soundness	Decidable [Țiplea, Marinescu;'04]	

	known results	our work
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised Soundness	Decidable [van Hee et al.;'04]	PSPACE- complete
Structural Soundness	Decidable [Țiplea, Marinescu;'04]	

	known results	our work
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised	Decidable	PSPACE-
Soundness	[van Hee et al.;'04]	complete
Structural	Decidable	EXPSPACE-
Soundness	[Țiplea, Marinescu;'04]	complete

	known results	our work
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised	Decidable	PSPACE-
Soundness	[van Hee et al.;'04]	complete
Structural	Decidable	EXPSPACE-
Soundness	[Țiplea, Marinescu;'04]	complete

	known results	our work
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised	Decidable	PSPACE-
Soundness	[van Hee et al.;'04]	complete
Structural	Decidable	EXPSPACE-
Soundness	[Țiplea, Marinescu;'04]	complete

Exact algorithms are impractical in general; instead:

• Focus on semi-decision procedures - *Continuous Soundness*

	known results	our work
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised	Decidable	PSPACE-
Soundness	[van Hee et al.;'04]	complete
Structural	Decidable	EXPSPACE-
Soundness	[Țiplea, Marinescu;'04]	complete

Exact algorithms are impractical in general; instead:

• Focus on semi-decision procedures - *Continuous Soundness* co-NP complete necessary condition for generalised soundness

	known results	our work
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised	Decidable	PSPACE-
Soundness	[van Hee et al.;'04]	complete
Structural	Decidable	EXPSPACE-
Soundness	[Țiplea, Marinescu;'04]	complete

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets*

	known results	our work
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised	Decidable	PSPACE-
Soundness	[van Hee et al.;'04]	complete
Structural	Decidable	EXPSPACE-
Soundness	[Țiplea, Marinescu;'04]	complete

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

	known results	our work	[LICS '22]
k-Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	
Generalised	Decidable	PSPACE-	
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	
Soundness	[Țiplea, Marinescu;'04]	complete	

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

	known results	our work	[LICS '22]
k-Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	
Soundness	[Țiplea, Marinescu;'04]	complete	

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

	known results	our work	[LICS '22]
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

	known results	our work	[LICS '22]
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

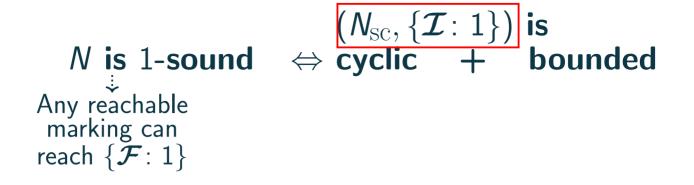
- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

[CAV '22]

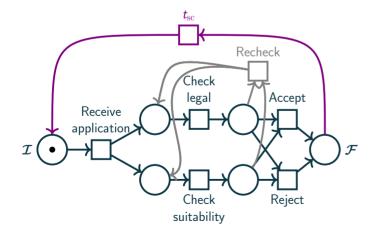
	known results	our work	[LICS '22]
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	
Generalised Soundness	Decidable [van Hee et al.;'04]	PSPACE- complete	2.
Structural Soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete	3.
Exact algorithms are impractical in general: instead:			[CAV '22]

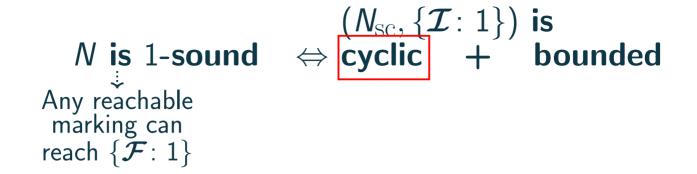
Exact algorithms are impractical in general; instead:

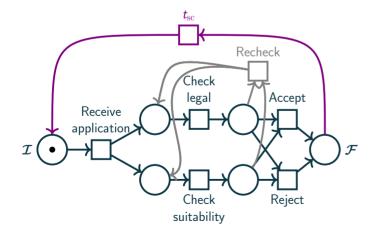
- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

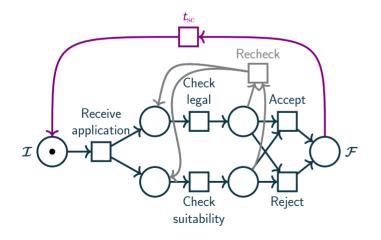

	known results	our work	[LICS '22]
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	
Generalised Soundness	Decidable [van Hee et al.;'04]	PSPACE- complete	2.
Structural Soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete	3.
Exact algorithms are impractical in general: instead:			[CAV '22]

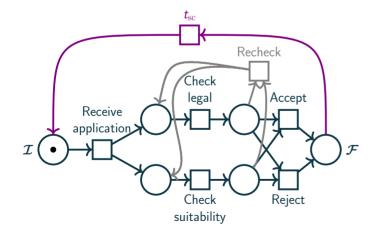
Exact algorithms are impractical in general; instead:

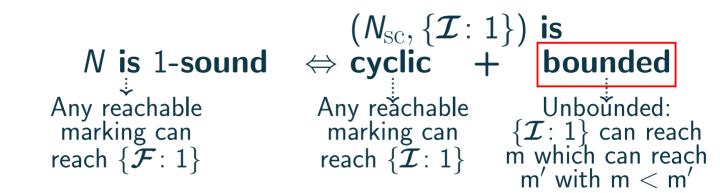

- Focus on semi-decision procedures Continuous Soundness co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

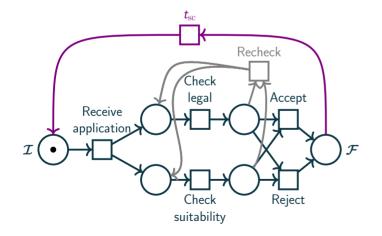

$\begin{array}{c} (N_{\rm SC}, \{\mathcal{I}:1\}) \text{ is} \\ N \text{ is 1-sound } \Leftrightarrow \text{ cyclic } + \text{ bounded} \end{array}$

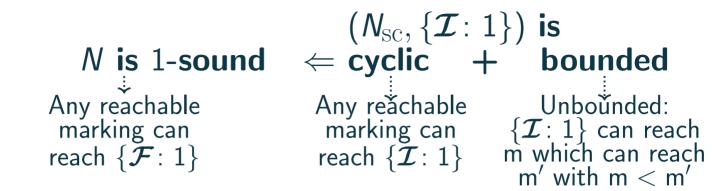

$(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $N \text{ is } 1\text{-sound} \Leftrightarrow \text{cyclic} + \text{bounded}$ Any reachable marking can $\text{reach } \{\mathcal{F}: 1\}$

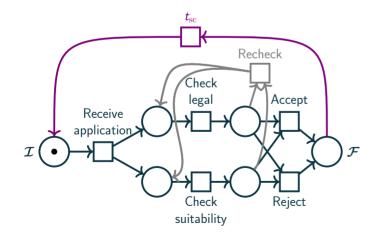


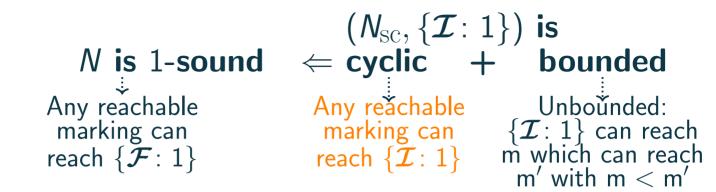


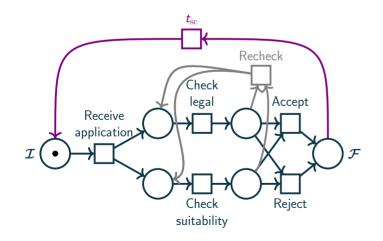


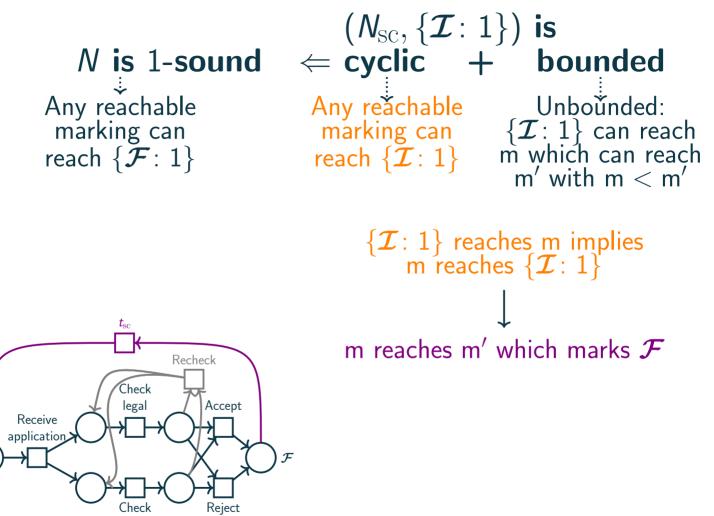


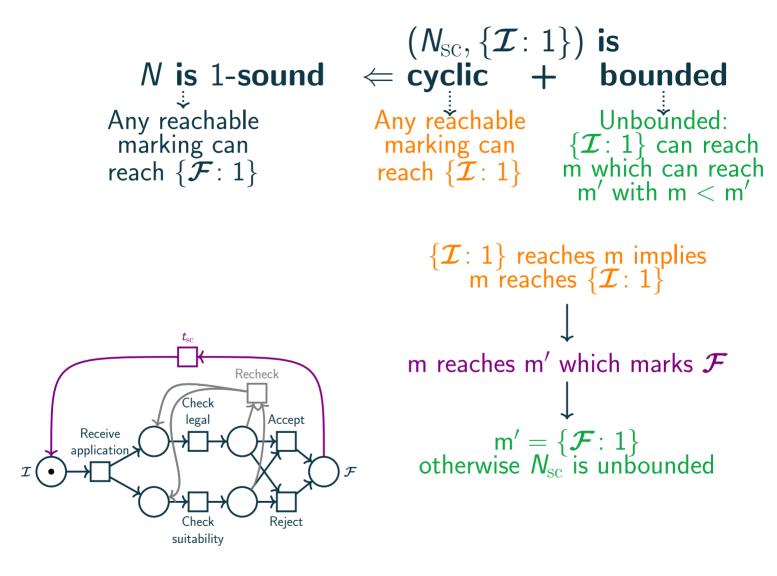




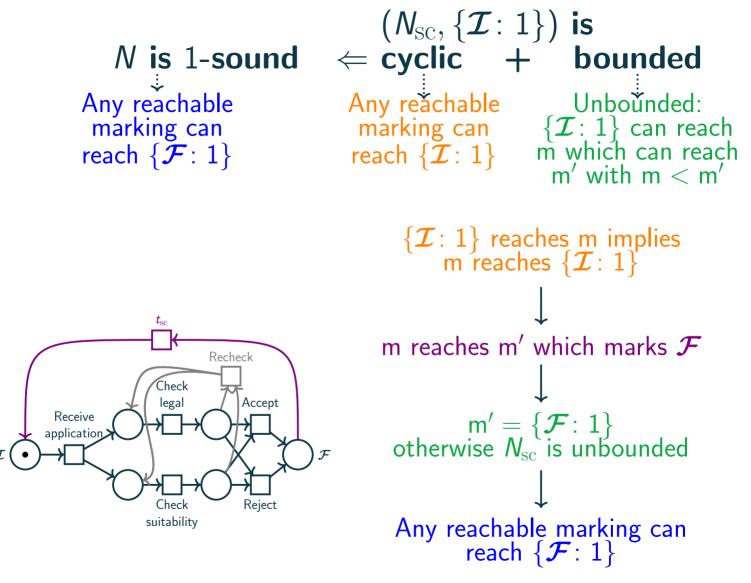




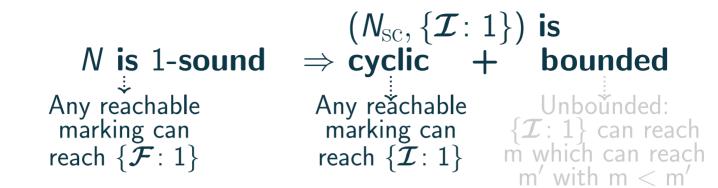


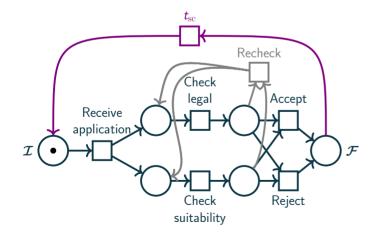


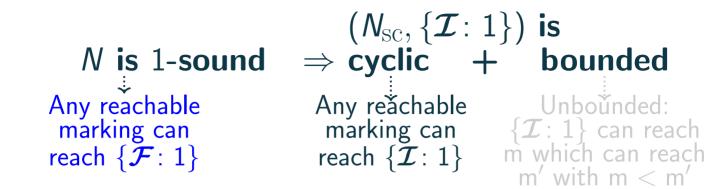
 $\{\mathcal{I}: 1\}$ reaches m implies m reaches $\{\mathcal{I}: 1\}$



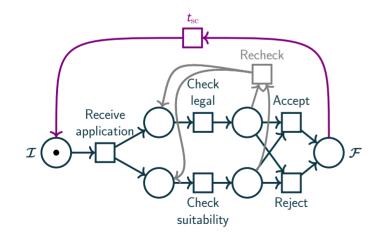
suitability

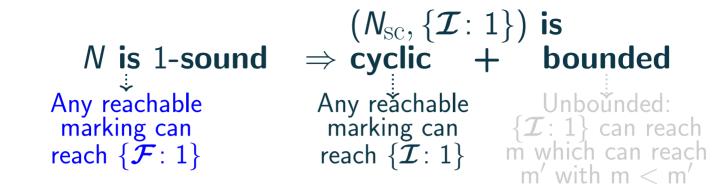


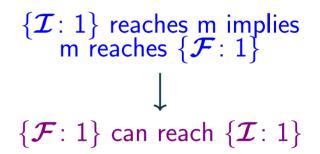

12 / 34

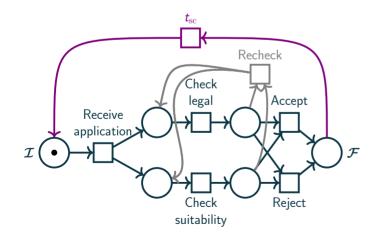


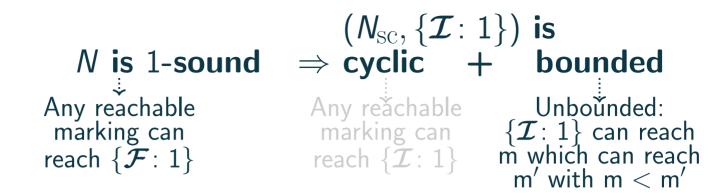
Philip Offtermatt

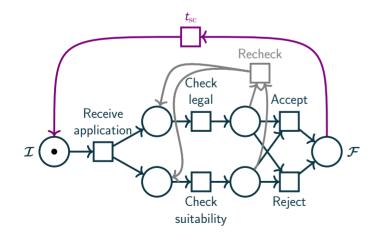

The complexity of soundness in workflow nets

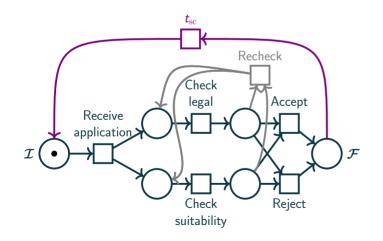


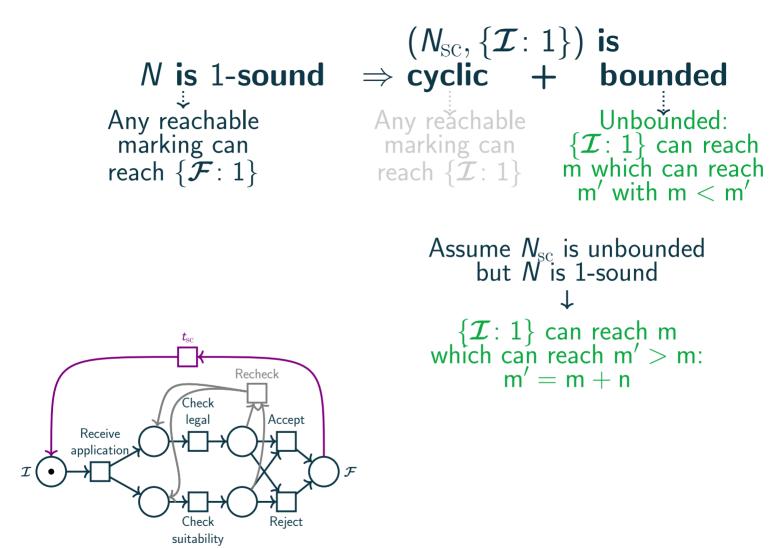


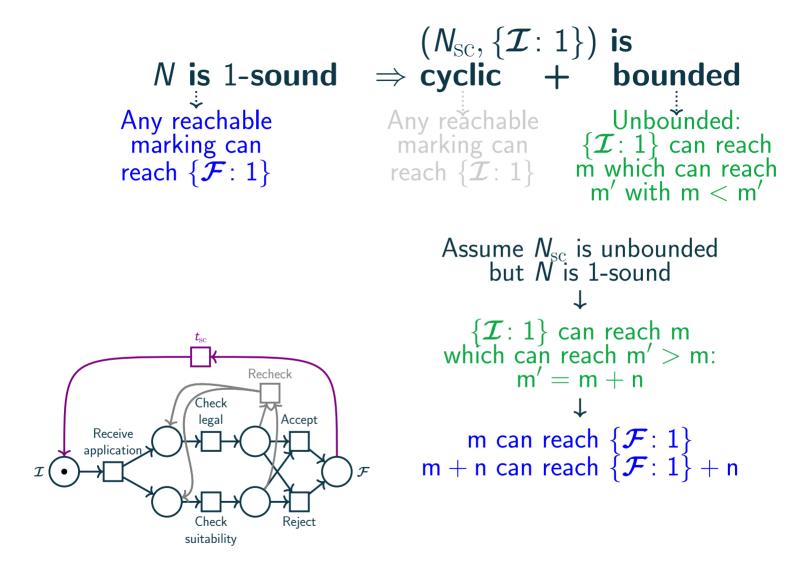


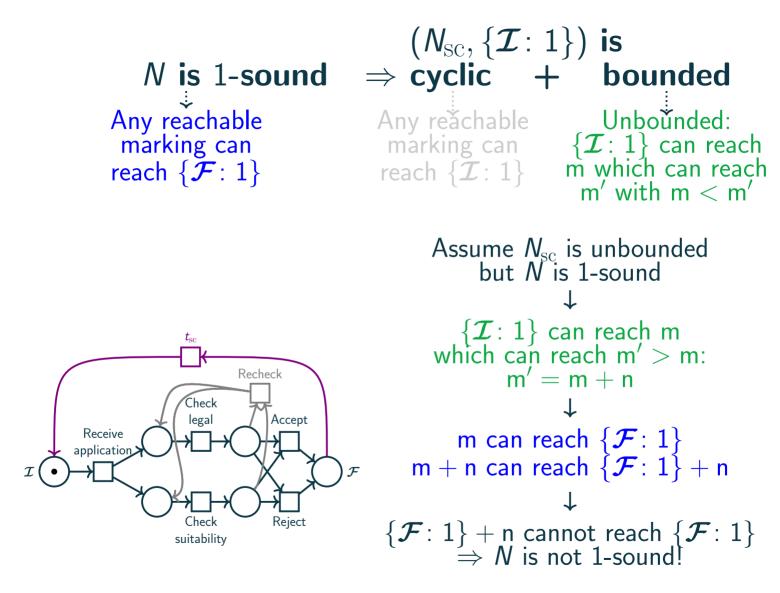

 $\{ \mathcal{I}: 1 \}$ reaches m implies m reaches $\{ \mathcal{F}: 1 \}$








$(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $\Rightarrow \text{ cyclic } + \text{ bounded}$ $(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $\Rightarrow \text{ cyclic } + \text{ bounded}$ $(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $\Rightarrow \text{ cyclic } + \text{ bounded}$ $(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $(N_{SC}, \{\mathcal$


Assume $N_{\rm sc}$ is unbounded but N is 1-sound

14 / 34

$\begin{array}{c} (N_{\rm SC}, \{\mathcal{I}:1\}) \text{ is} \\ N \text{ is 1-sound } \Leftrightarrow \text{ cyclic } + \text{ bounded} \end{array}$

$(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $N \text{ is 1-sound} \Leftrightarrow \text{cyclic} + \text{bounded}$ $In \text{ EXPSPACE}_{[Bouziane \& Finkel, '97]}$

 $(N_{
m sc},\{\mathcal{I}\colon 1\})$ is *N* is 1-sound \Leftrightarrow cyclic + bounded In EXPSPACE In EXPSPACE [Bouziane & [Rackoff, '78] Finkel, '97]

$$(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$$

$$N \text{ is 1-sound} \Leftrightarrow \text{cyclic} + \text{bounded}$$

$$\text{In EXPSPACE!} \qquad \text{In EXPSPACE} \qquad \text{In EXPSPACE} \qquad \text{In EXPSPACE} \qquad \text{In EXPSPACE} \qquad \text{[Bouziane \& Finkel, '97]} \qquad \text{In EXPSPACE} \qquad \text{[Rackoff, '78]}$$

EXPSPACE-hardness is by reduction from reachability in **reversible Petri nets**

Philip Offtermatt The complexity of soundness in workflow nets 15 / 34

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

4.

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

4.

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

4.

Generalised soundness is in PSPACE

N is **generalised sound:** $\forall k : \{\mathcal{I} : k\} \rightarrow m \text{ implies } m \rightarrow \{\mathcal{F} : k\}$

Generalised soundness is in PSPACE

N is **generalised sound:** $\forall k : \{\mathcal{I} : k\} \rightarrow m \text{ implies } m \rightarrow \{\mathcal{F} : k\}$

Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

Generalised soundness is in PSPACE

N is **generalised sound:** $\forall k : {\mathcal{I} : k} \rightarrow m$ implies $m \rightarrow {\mathcal{F} : k}$

Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Generalised soundness is in PSPACE

N is **generalised sound:** $\forall k : {\mathcal{I} : k} \rightarrow m$ implies $m \rightarrow {\mathcal{F} : k}$

Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not \mathbb{Z} -bounded

Generalised soundness is in PSPACE

N is **generalised sound:** $\forall k : \{\mathcal{I} : k\} \rightarrow m \text{ implies } m \rightarrow \{\mathcal{F} : k\}$

Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not \mathbb{Z} -bounded

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

Algorithm:

• Guess small k

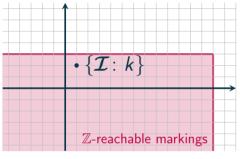
• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

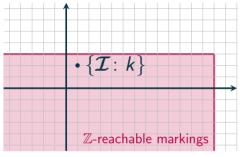
Algorithm:


• Guess small k

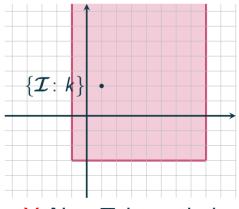
• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

Generalised Soundness requires \mathbb{Z} -boundedness \mathbb{Z} -boundedness: $\forall k \exists \vec{b}: \{\mathcal{I}: k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

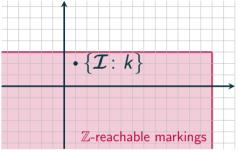

 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

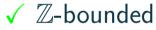


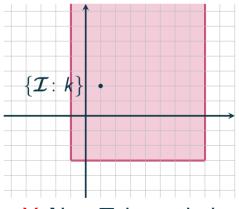


Generalised Soundness requires \mathbb{Z} -boundedness \mathbb{Z} -boundedness: $\forall k \exists \vec{b}: \{\mathcal{I}: k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

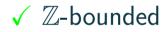


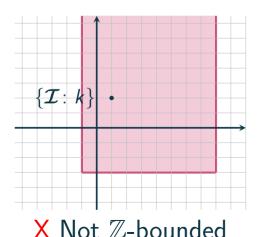

X Not \mathbb{Z} -bounded


Generalised Soundness requires \mathbb{Z} -boundedness \mathbb{Z} -boundedness: $\forall k \exists \vec{b}: \{\mathcal{I}: k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

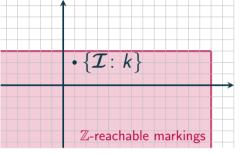
Why does gen. soundness require \mathbb{Z} -boundedness?

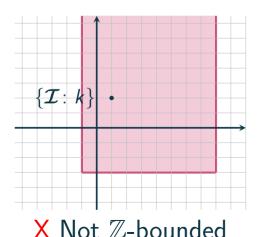



X Not \mathbb{Z} -bounded

Generalised Soundness requires \mathbb{Z} -boundedness \mathbb{Z} -boundedness: $\forall k \exists \vec{b}: \{\mathcal{I}: k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

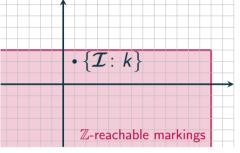
 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

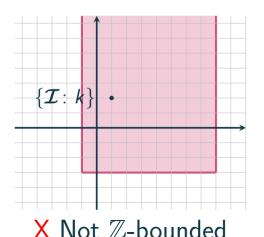

• {*I*: *k*}



Why does gen. soundness require \mathbb{Z} -boundedness?

Recall: *k*-soundness requires boundedness from {*I*: *k*}

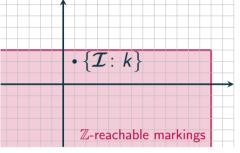

 \checkmark \mathbb{Z} -bounded


Why does gen. soundness require \mathbb{Z} -boundedness?

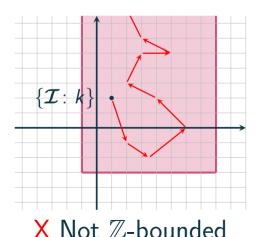
Recall: *k*-soundness requires boundedness from {*I*: *k*}

⇒ Generalised soundness requires boundedness for all *k*

✓ ℤ-bounded



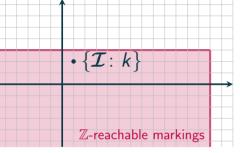
Why does gen. soundness require \mathbb{Z} -boundedness?


Recall: *k*-soundness requires boundedness from {*I*: *k*}

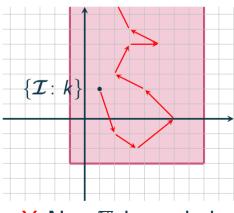
⇒ Generalised soundness requires boundedness for all *k*

If a net is \mathbb{Z} -unbounded, then for some k it is unbounded over \mathbb{N}

 \checkmark \mathbb{Z} -bounded




Why does gen. soundness require \mathbb{Z} -boundedness?


Recall: *k*-soundness requires boundedness from {*I*: *k*}

⇒ Generalised soundness requires boundedness for all *k*

If a net is \mathbb{Z} -unbounded, then for some k it is unbounded over \mathbb{N}

X Not \mathbb{Z} -bounded

Why does gen. soundness require \mathbb{Z} -boundedness?

Recall: *k*-soundness requires boundedness from {*I*: *k*}

⇒ Generalised soundness requires boundedness for all *k*

If a net is \mathbb{Z} -unbounded, then for some k it is unbounded over \mathbb{N}

```
X Not bounded from k'
```

 $\{\mathcal{I}: k'\}$

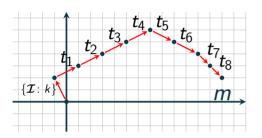
A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

2.

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

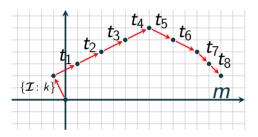
A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

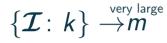

2.

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

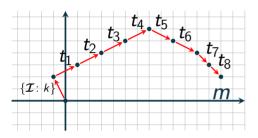
 $\{\mathcal{I}: k\} \stackrel{\scriptscriptstyle \mathrm{very\ large}}{
ightarrow} m$

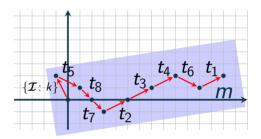
$\{\mathcal{I}: k\} \xrightarrow{}^{\text{very large}} M$ Big markings must be reached by long runs

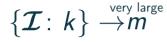

Big markings must be reached by long runs


 $\{\mathcal{I}: k\} \stackrel{}{\to} m^{\mathsf{very large}}$

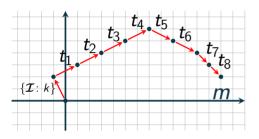
 $\{\mathcal{I}: k\} \stackrel{}{\to} m^{\text{very large}}$


Big markings must be reached by long runs

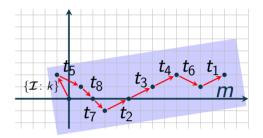

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

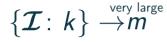


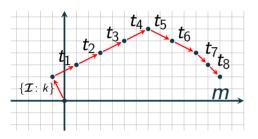
Big markings must be reached by long runs

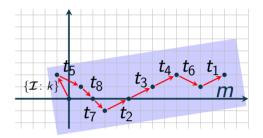


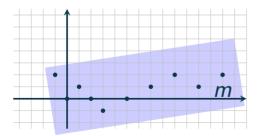
Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

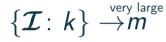



Big markings must be reached by long runs

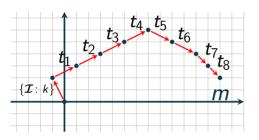

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*


Long runs \Rightarrow Many vectors \Rightarrow Many points

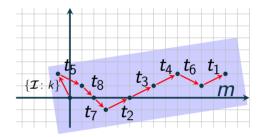

Big markings must be reached by long runs

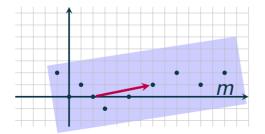


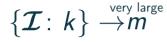
Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

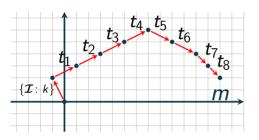


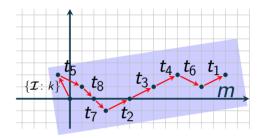
Long runs \Rightarrow Many vectors \Rightarrow Many points

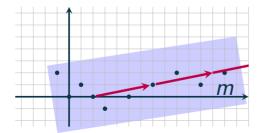


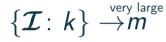

Big markings must be reached by long runs

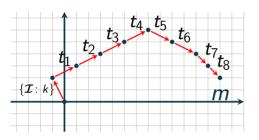

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

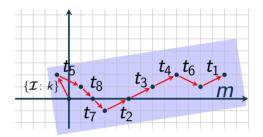

Long runs \Rightarrow Many vectors \Rightarrow Many points

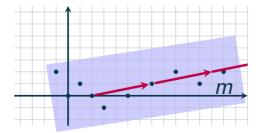

Enough points $\xrightarrow{Pigeonhole}$ Strict increases \Rightarrow \mathbb{Z} -unboundedness


Big markings must be reached by long runs


Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*


Long runs \Rightarrow Many vectors \Rightarrow Many points


Enough points $\xrightarrow{Pigeonhole}$ Strict increases \Rightarrow \mathbb{Z} -unboundedness


Big markings must be reached by long runs

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

Long runs \Rightarrow Many vectors \Rightarrow Many points

Enough points $\xrightarrow{Pigeonhole}$ Strict increases \Rightarrow \mathbb{Z} -unboundedness

Big reachable markings imply \mathbb{Z} -unboundedness!

Philip Offtermatt

The complexity of soundness in workflow nets

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not \mathbb{Z} -bounded

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

Checking soundness - complexity?

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

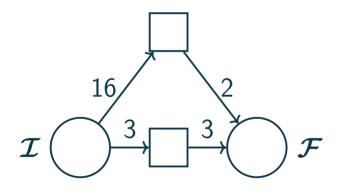
Checking soundness - complexity?

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

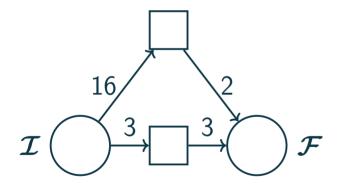
Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

Checking soundness - complexity?

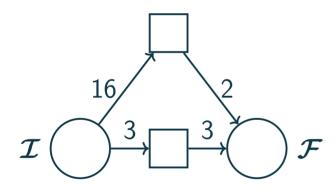

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:


- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

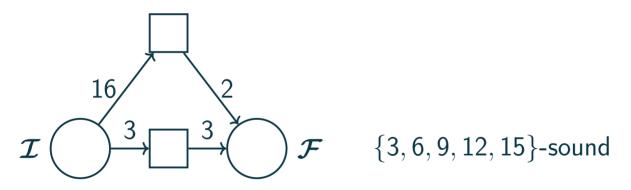
Theorem: Sound_N = {p, 2p, 3p, ..., kp} with $p \in \mathbb{N}, k \in \mathbb{N} \cup \{\infty\}$

Theorem: Sound_N = {p, 2p, 3p, ..., kp} with $p \in \mathbb{N}, k \in \mathbb{N} \cup \{\infty\}$



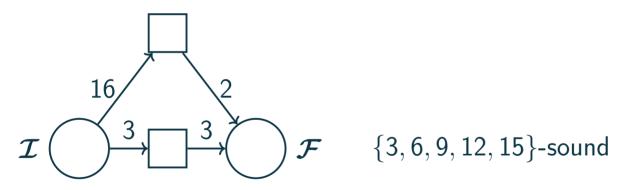
Theorem: Sound_N = {p, 2p, 3p, ..., kp} with $p \in \mathbb{N}, k \in \mathbb{N} \cup \{\infty\}$

 $\{3, 6, 9, 12, 15\}$ -sound


Theorem: Sound_N = {p, 2p, 3p, ..., kp} with $p \in \mathbb{N}, k \in \mathbb{N} \cup \{\infty\}$...and p, k (if $\neq \infty$) are at most exponential in size(N)

 $\{3, 6, 9, 12, 15\}$ -sound

Deciding structural soundness in EXPSPACE Characterize the **set of sound numbers**


Theorem: Sound_N = {p, 2p, 3p, ..., kp} with $p \in \mathbb{N}, k \in \mathbb{N} \cup \{\infty\}$...and p, k (if $\neq \infty$) are at most exponential in size(N)

EXPSPACE-algorithm for structural soundness:

Deciding structural soundness in EXPSPACE Characterize the **set of sound numbers**

Theorem: Sound_N = {p, 2p, 3p, ..., kp} with $p \in \mathbb{N}, k \in \mathbb{N} \cup \{\infty\}$...and p, k (if $\neq \infty$) are at most exponential in size(N)

EXPSPACE-algorithm for structural soundness: Check *k*-soundness for all "small" *k*

Checking soundness - complexity?

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

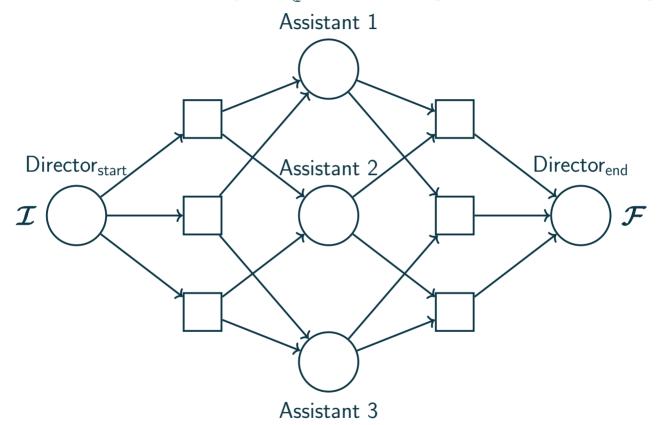
4.

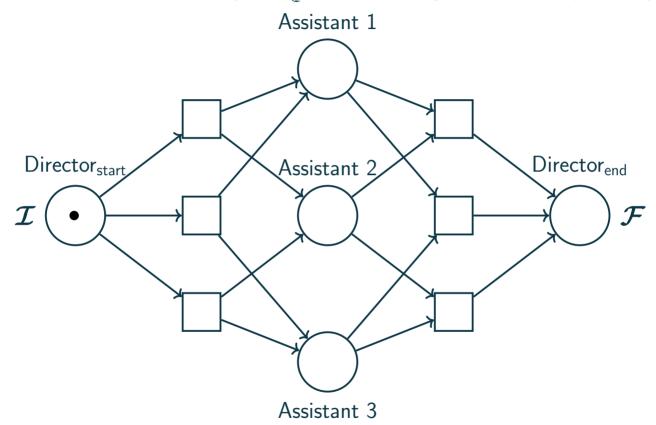
Checking soundness - complexity?

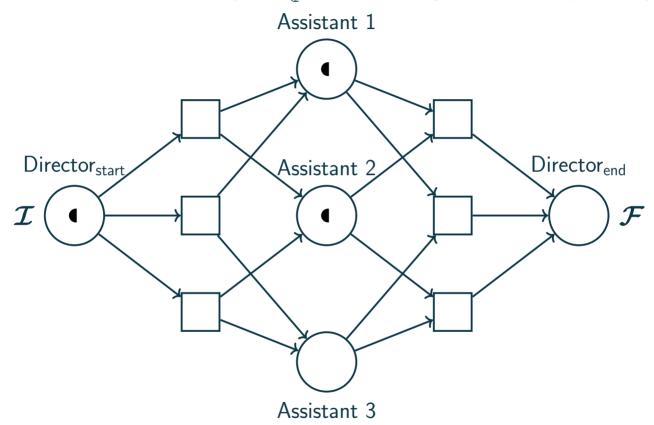
	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

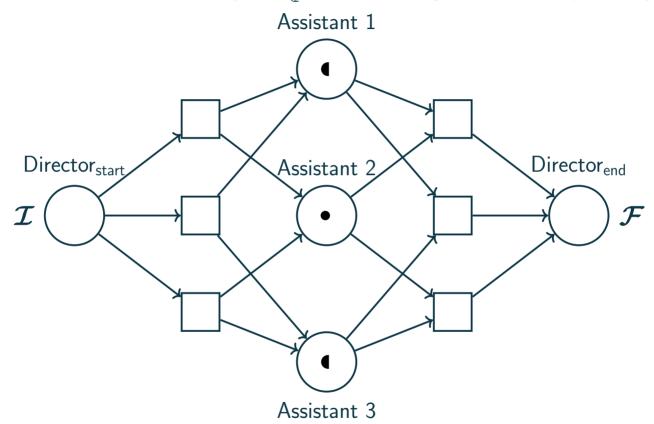
Exact algorithms are impractical in general; instead:

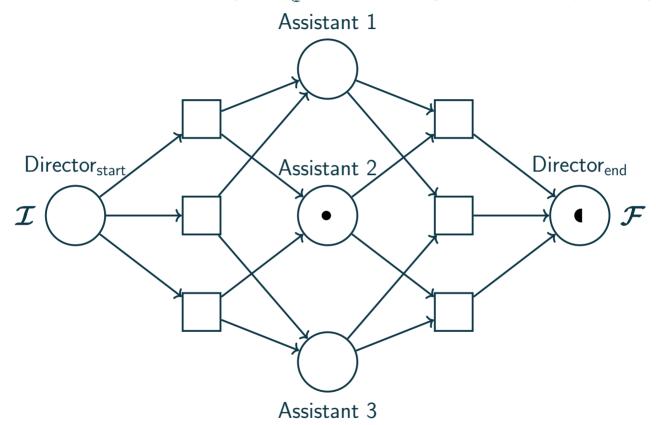
- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

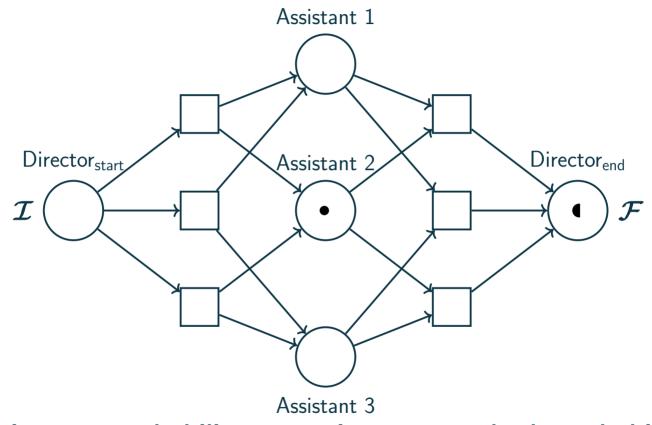

4.

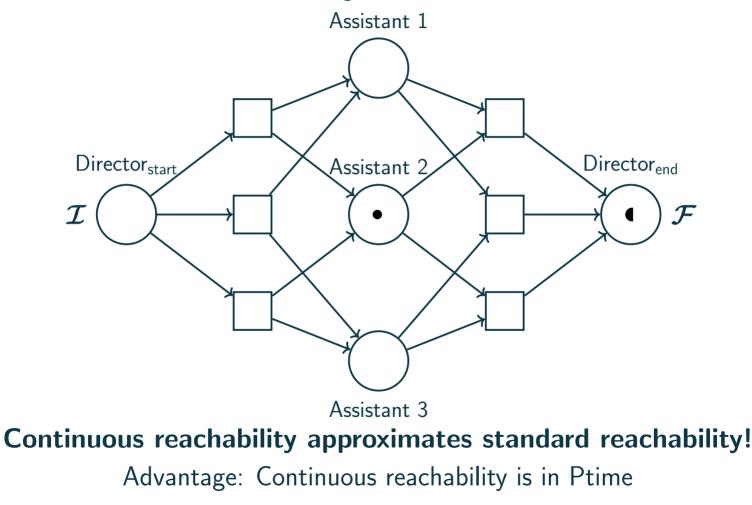

Checking soundness - complexity?


	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	


Exact algorithms are impractical in general; instead:


- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent





Continuous Reachability $\rightarrow_{\mathbb{Q}}$: Allow firing transitions partially

Continuous reachability approximates standard reachability!

Continuous Reachability $\rightarrow_{\mathbb{Q}}$: Allow firing transitions partially

Philip Offtermatt

The complexity of soundness in workflow nets

Reachability: $\exists \pi : m_s \xrightarrow{\pi} m_t$

Reachability: $\exists \pi : m_s \xrightarrow{\pi} m_t$ $\Rightarrow \begin{array}{c} \textbf{Continuous Reachability:} \\ \exists \pi : m_s \xrightarrow{\pi}_{\mathbb{Q}} m_t \end{array}$

Reachability: $\exists \pi : m_s \xrightarrow{\pi} m_t$ $\Rightarrow \begin{array}{c} \textbf{Continuous Reachability:} \\ \exists \pi : m_s \xrightarrow{\pi}_{\mathbb{Q}} m_t \end{array}$

1-Soundness: $\forall \pi \exists \pi' : \{ \mathcal{I} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \}$

Reachability: $\exists \pi: m_s \xrightarrow{\pi} m_t$

Continuous Reachability: $\exists \pi : m_s \xrightarrow{\pi}_{\mathbb{O}} m_t$

1-Soundness:

Continuous Soundness: $\forall \pi \exists \pi' : \{ \mathcal{I} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \} \qquad \forall \pi \exists \pi' : \{ \mathcal{I} : 1 \} \xrightarrow{\pi \pi'} \mathbb{O} \{ \mathcal{F} : 1 \}$

Reachability:
 $\exists \pi : m_s \xrightarrow{\pi} m_t$ Continuous Reachability:
 $\exists \pi : m_s \xrightarrow{\pi}_{\mathbb{Q}} m_t$

1-Soundness: $\forall \pi \exists \pi' : \{\mathcal{I}: 1\} \xrightarrow{\pi\pi'} \{\mathcal{F}: 1\} \xrightarrow{\pi\pi'} \{\mathcal{F}: 1\} \xrightarrow{\pi\pi'} \{\mathcal{I}: 1\} \xrightarrow{\pi\pi'} \{\mathcal{F}: 1\}$

Reachability: $\exists \pi : m_s \xrightarrow{\pi} m_t$ **Continuous Reachability**: $\exists \pi : m_s \xrightarrow{\pi}_{\mathbb{Q}} m_t$

1-Soundness: $\forall \pi \exists \pi' : \{\mathcal{I}: 1\} \xrightarrow{\pi\pi'} \{\mathcal{F}: 1\} \xrightarrow{\pi\pi'} \forall \pi \exists \pi' : \{\mathcal{I}: 1\} \xrightarrow{\pi\pi'} \mathbb{Q} \{\mathcal{F}: 1\}$ Generalised Soundness: $\forall k \forall \pi \exists \pi' : \{\mathcal{I}: k\} \xrightarrow{\pi\pi'} \{\mathcal{F}: k\}$

Reachability:

Continuous Reachability: $\exists \pi : m_s \xrightarrow{\pi}_{\mathbb{O}} m_t$ $\exists \pi: m_s \xrightarrow{\pi} m_t$ 1-Soundness: **Continuous Soundness**: $\forall \pi \exists \pi' : \{ \mathcal{I} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{I} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \}$ **Generalised Soundness**: [CAV'22] $\forall \mathbf{k} \forall \pi \exists \pi' : \{ \mathcal{I} : \mathbf{k} \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : \mathbf{k} \}$

Generalised soundness has a continuous overapproximation ...contrary to many other $\forall \exists$ properties

 $\Rightarrow \begin{array}{c} \textbf{Continuous Reachability:} \\ \exists \pi : m_s \xrightarrow{\pi}_{\mathbb{O}} m_t \end{array}$ $\exists \pi: m_s \xrightarrow{\pi} m_t$ 1-Soundness: **Continuous Soundness**: $\forall \pi \exists \pi' : \{ \mathcal{I} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{I} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \}$ **Generalised Soundness**: [CAV'22] $\forall \mathbf{k} \forall \pi \exists \pi' : \{ \mathcal{I} : \mathbf{k} \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : \mathbf{k} \}$

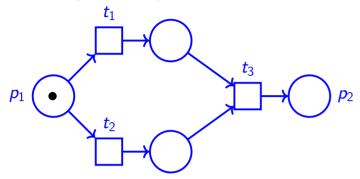
Generalised soundness has a continuous overapproximation

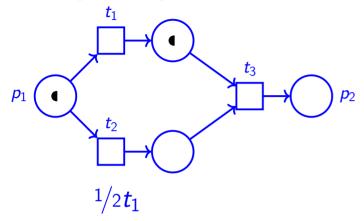
...contrary to many other $\forall \exists$ properties

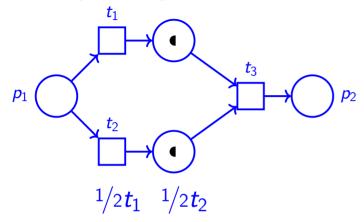
$$\forall \pi \exists \pi' : m_s \xrightarrow{\pi \pi' t_{\mathsf{live}}}$$

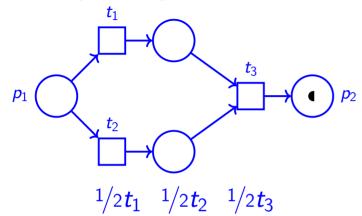
Reachability:

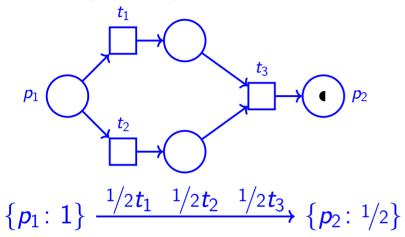
 $\Rightarrow \begin{array}{c} \textbf{Continuous Reachability:} \\ \exists \pi : m_s \xrightarrow{\pi}_{\mathbb{O}} m_t \end{array}$ $\exists \pi: m_s \xrightarrow{\pi} m_t$ 1-Soundness: $\forall \pi \exists \pi' : \{ \mathcal{I} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : 1 \} \xrightarrow{\pi \pi'} \mathbb{O} \{ \mathcal{F} : 1 \}$ Generalised Soundness: [CAV'22] $\forall k \forall \pi \exists \pi' : \{ \mathcal{I} : k \} \xrightarrow{\pi \pi'} \{ \mathcal{F} : k \}$

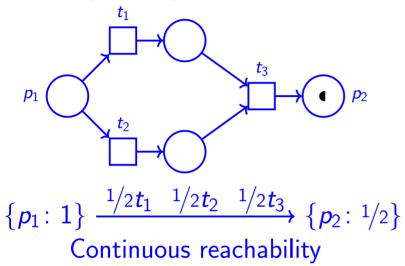

Generalised soundness has a continuous overapproximation ...contrary to many other $\forall \exists$ properties

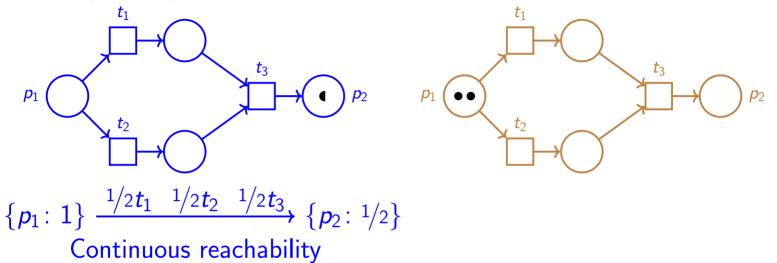

Liveness: $\forall \pi \exists \pi' : m_s \xrightarrow{\pi \pi' t_{\mathsf{live}}}$

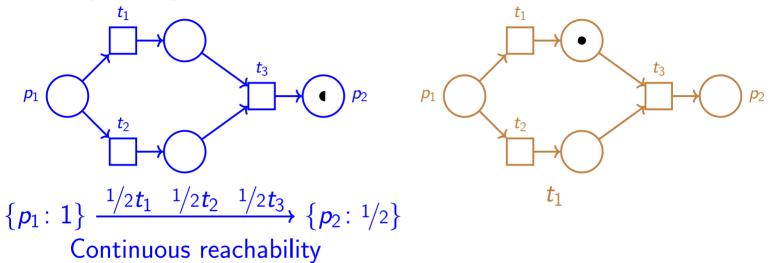

Reachability:

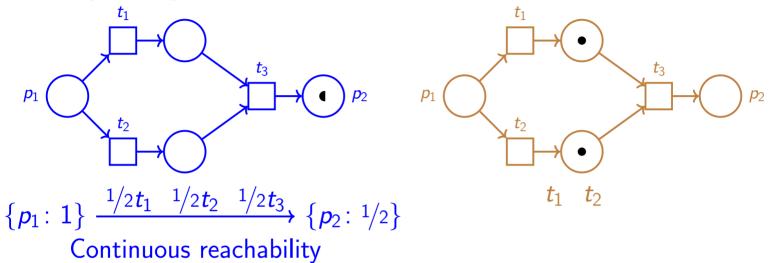

Home State:
$$\forall \pi \exists \pi' : m_s \xrightarrow{\pi \pi'} m_{\text{home}}$$

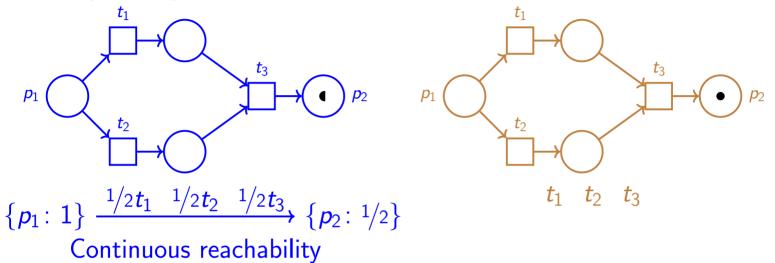

Philip Offtermatt

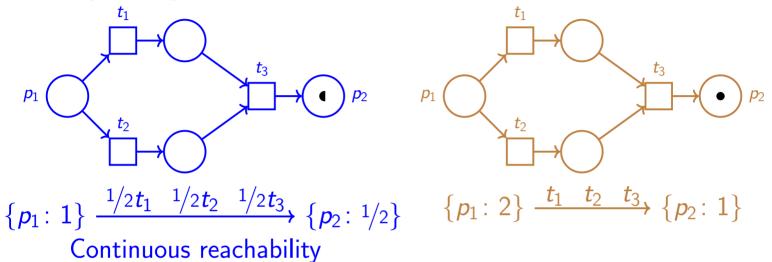


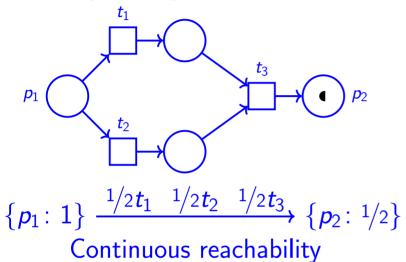


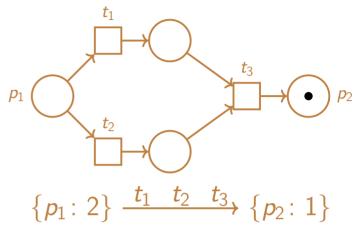


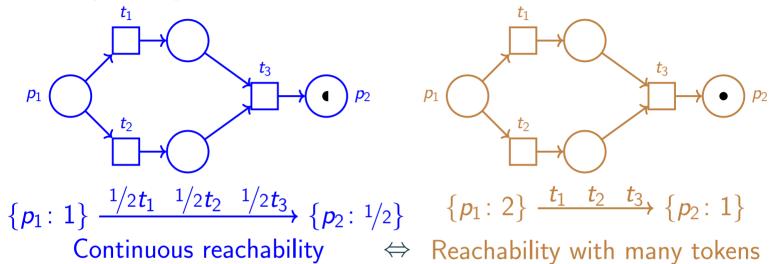




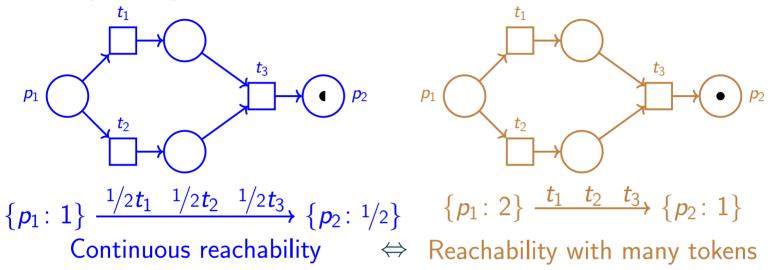




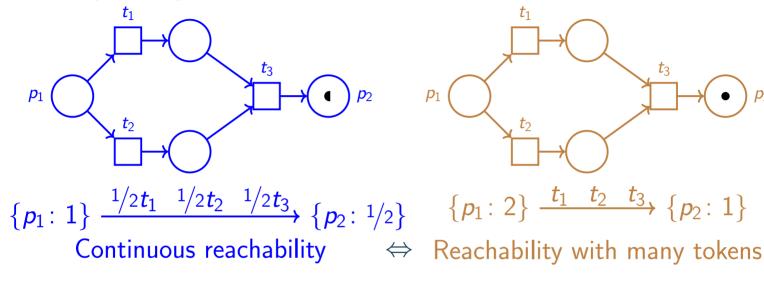




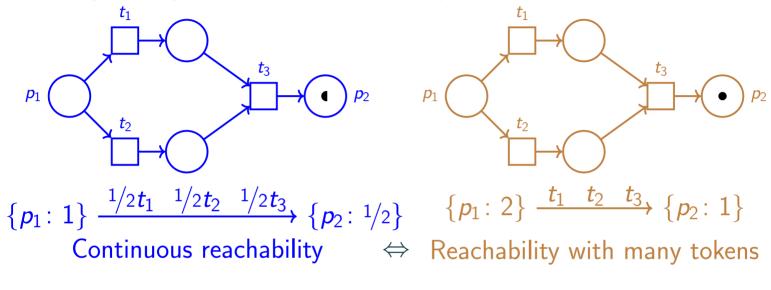
Why does generalised soundness require continuous soundness?



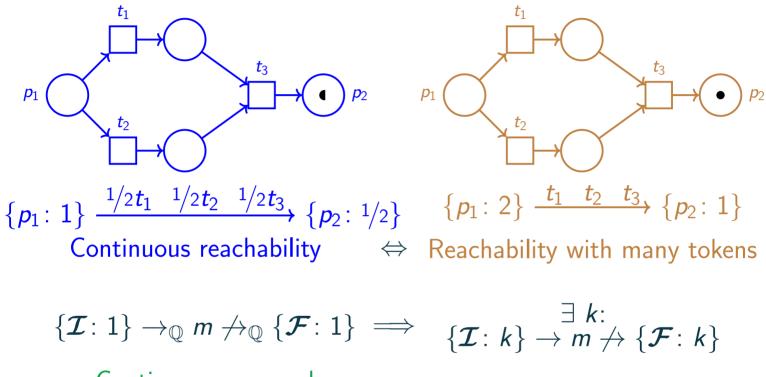
Reachability with many tokens



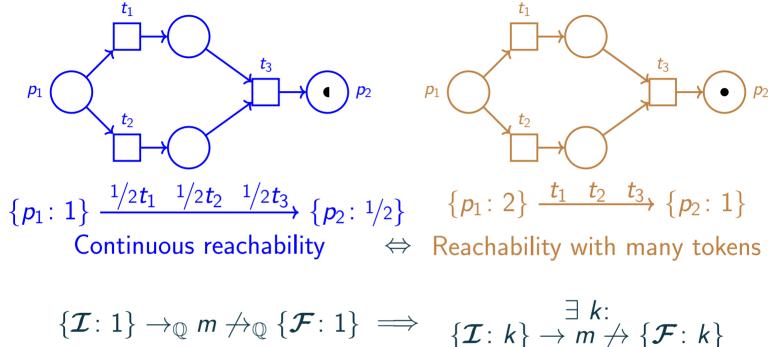
Why does generalised soundness require continuous soundness?


$$\{\mathcal{I}\colon 1\}
ightarrow_{\mathbb{Q}} m
eq _{\mathbb{Q}} \{\mathcal{F}\colon 1\}$$

Why does generalised soundness require continuous soundness?


 $\{\mathcal{I}: 1\} \to_{\mathbb{Q}} m \not\to_{\mathbb{Q}} \{\mathcal{F}: 1\} \qquad \qquad \begin{array}{c} \exists k: \\ \{\mathcal{I}: k\} \to m \not\to \{\mathcal{F}: k\} \end{array}$

Why does generalised soundness require continuous soundness?


$$\{\mathcal{I}:1\} \rightarrow_{\mathbb{Q}} m \not\rightarrow_{\mathbb{Q}} \{\mathcal{F}:1\} \implies \qquad \begin{array}{c} \exists k:\\ \{\mathcal{I}:k\} \rightarrow m \not\rightarrow \{\mathcal{F}:k\} \end{array}$$

Why does generalised soundness require continuous soundness?

Continuous unsound

Why does generalised soundness require continuous soundness?

$$\{\mathcal{I}:1\}
ightarrow_{\mathbb{Q}} m
ightarrow_{\mathbb{Q}} \{\mathcal{F}:1\} \implies$$

Continuous unsound

Generalised unsound

Complexity of Continuous Soundness Continuous Reachability: in **PTIME** [Fraca&Haddad, 2013]

Complexity of Continuous Soundness Continuous Reachability: in **PTIME** [Fraca&Haddad, 2013]

Continuous Inclusion: in coNP [Blondin et al., 2017] \mathbb{Q} -Reach $(N, m) \subseteq \mathbb{Q}$ -Reach(N', m')

Complexity of Continuous Soundness Continuous Reachability: in **PTIME** [Fraca&Haddad, 2013]

Continuous Inclusion: in coNP [Blondin et al., 2017] \mathbb{Q} -Reach $(N, m) \subseteq \mathbb{Q}$ -Reach(N', m')

Continuous Soundness: **coNP-complete** [CAV'22] \mathbb{Q} -Reach($N, \{\mathcal{I}: 1\}$) $\subseteq \mathbb{Q}$ -Reach($N^{\text{Reversed}}, \{\mathcal{F}: 1\}$)

Continuous Soundness is a useful criterion Benchmarks: 1976 industrial nets

Continuous Soundness is a useful criterion

Benchmarks: 1976 industrial nets

1334/1976 nets are continuous unsound!

Continuous Soundness is a useful criterion Benchmarks: 1976 industrial nets 1334/1976 nets are continuous unsound! Remaining nets are continuous sound ...and also generalised sound Continuous Soundness is a useful criterion Benchmarks: 1976 industrial nets 1334/1976 nets are continuous unsound! Remaining nets are continuous sound ...and also generalised sound

Why is continuous soundness so accurate in practice?

Continuous Soundness is a useful criterion Benchmarks: 1976 industrial nets 1334/1976 nets are continuous unsound! Remaining nets are continuous sound ...and also generalised sound

Why is continuous soundness so accurate in practice?

Many instances are actually easy: Free Choice Workflow Nets

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

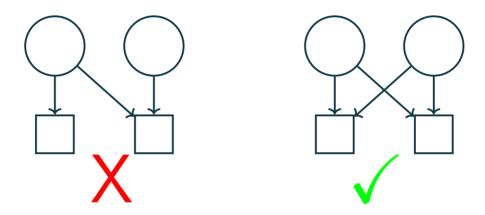
4.

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

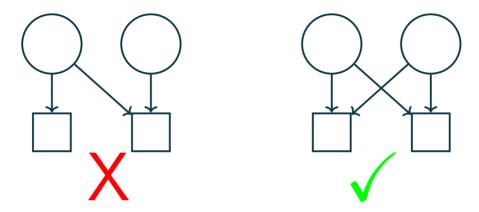
- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

4.


Workflow nets with a restriction on transitions:

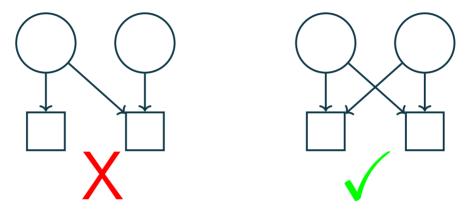
Workflow nets with a restriction on transitions:

Transitions that share an input place must share all input places


Workflow nets with a restriction on transitions:

Transitions that share an input place must share all input places

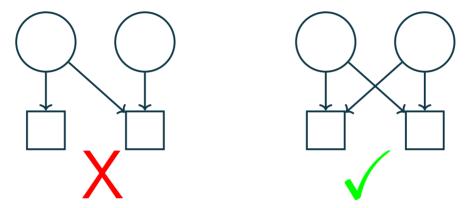
Workflow nets with a restriction on transitions:


Transitions that share an input place must share all input places

Soundness is in Ptime [van der Aalst, 1998]

Workflow nets with a restriction on transitions:

Transitions that share an input place must share all input places



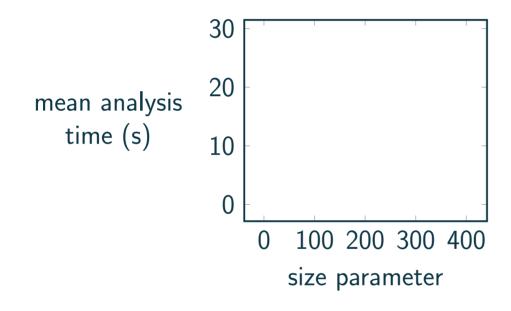
Soundness is in Ptime [van der Aalst, 1998]

Soundness notions are equivalent: 1-Sound $\equiv_{\text{[Ping et al.,'04]}}$ Gen. Sound $\equiv_{\text{[CAV'22]}}$ Struct. Sound $\equiv_{\text{[CAV'22]}}$ Cont. Sound

Workflow nets with a restriction on transitions:

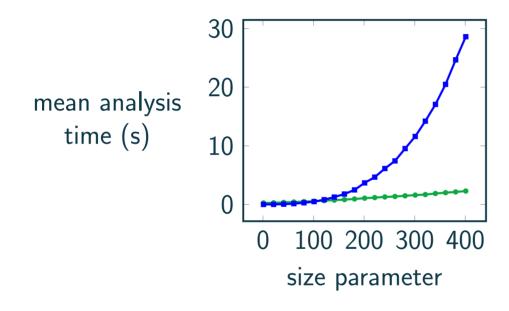
Transitions that share an input place must share all input places

Soundness is in Ptime [van der Aalst, 1998]

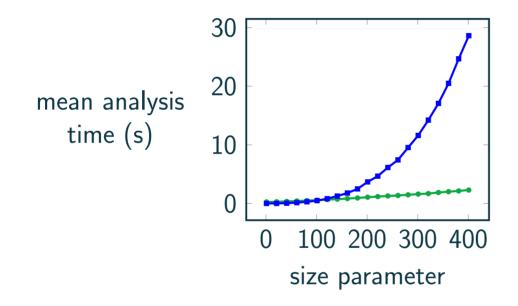

Soundness notions are equivalent: 1-Sound $\equiv_{\text{[Ping et al.,'04]}}$ Gen. Sound $\equiv_{\text{[CAV'22]}}$ Struct. Sound $\equiv_{\text{[CAV'22]}}$ Cont. Sound

Continuous soundness is **exact** on free-choice nets

Deciding soundness via: Continuous Soundness vs State Space Exploration


Deciding soundness via:

Continuous Soundness vs State Space Exploration


Deciding soundness via:

Continuous Soundness vs State Space Exploration

Deciding soundness via:

Continuous Soundness vs State Space Exploration

Promising addition to existing techniques for Free Choice nets

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

4.

	known results	our work	
<i>k</i> -Soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised	Decidable	PSPACE-	2.
Soundness	[van Hee et al.;'04]	complete	
Structural	Decidable	EXPSPACE-	3.
Soundness	[Țiplea, Marinescu;'04]	complete	

Exact algorithms are impractical in general; instead:

- Focus on semi-decision procedures *Continuous Soundness* co-NP complete necessary condition for generalised soundness
- Focus on subclasses *Free-Choice Workflow Nets* Soundness in Ptime, and all soundness variants are equivalent

4.

Conclusion

Workflow nets formally model processes

Soundness is a widely used correctness condition

Variants: Generalised Soundness, Structural Soundness

Established exact complexities of soundness variants

Continuous soundness: necessary for gen. soundness and equivalent to soundness variants on **Free-Choice nets**