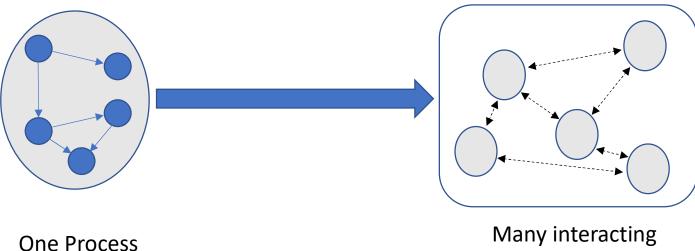
Approaching Safety for Parameterized Systems via View Abstraction

Philip Offtermatt

Parameterized Systems

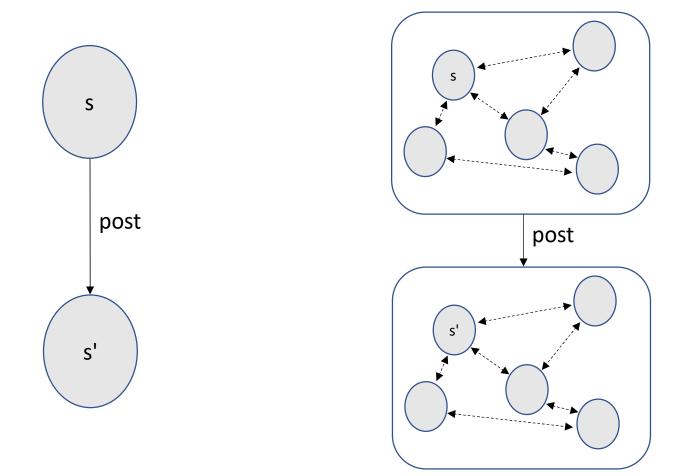


Processes

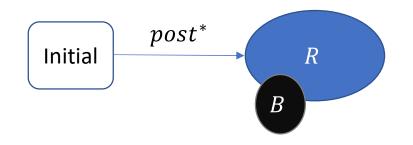
Why "parameterized"?

Parameter = interaction topology, number of processes

Parameterized Systems



Safety: Can we reach bad configurations?



Do R and B intersect?

Formal Model

Configuration: word of states

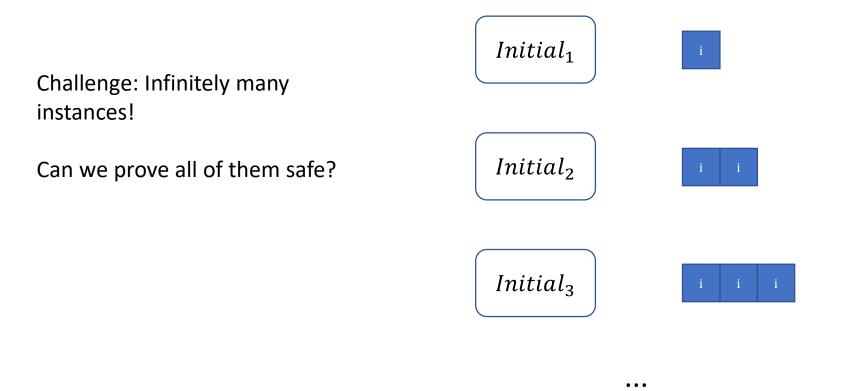
Transitions:

• Local: $s \rightarrow s'$

- Global: From point of view of process *i*
 - Existential: If $\exists j \circ i$: c[j] = q then $s \to s'$ else $s \to s''$

• Universal: If $\forall j \circ i$: c[j] = q then $s \rightarrow s'$ else $s \rightarrow s''$

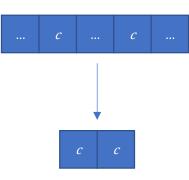
Parameterized Verification



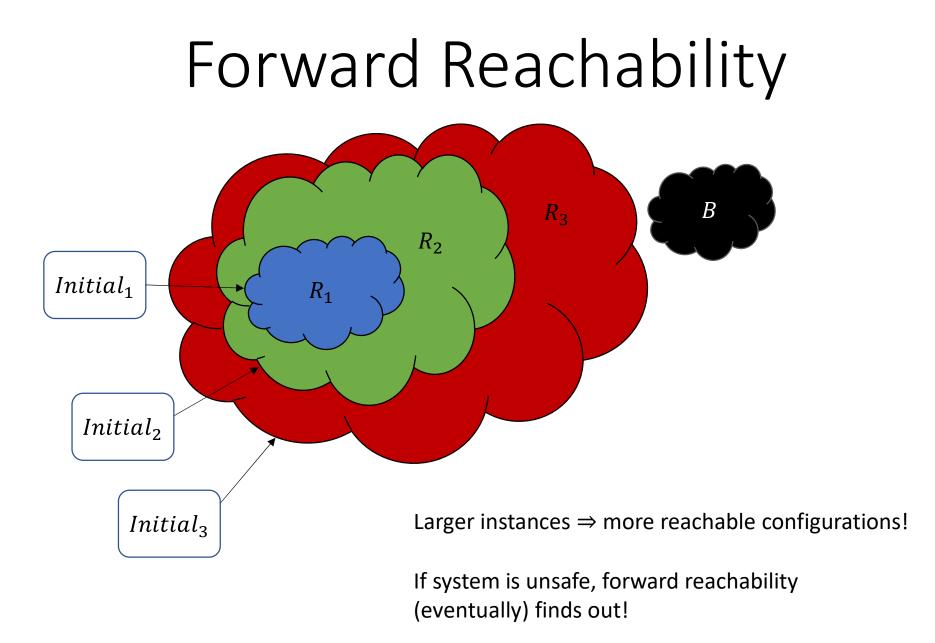
Parameterized Verification

Bad configurations:

- Example Mutual Exclusion: No two processes in the critical section *c* at the same time.
- $B = (\uparrow B_{min})$: Upward closure of minimal bad configurations

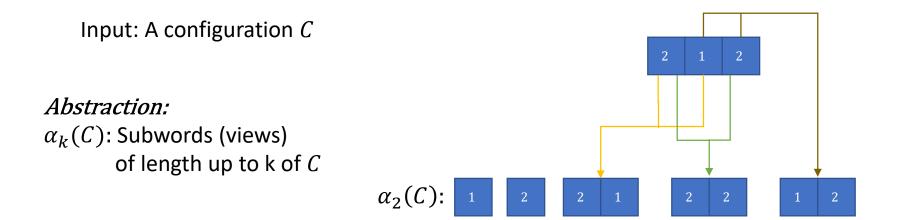


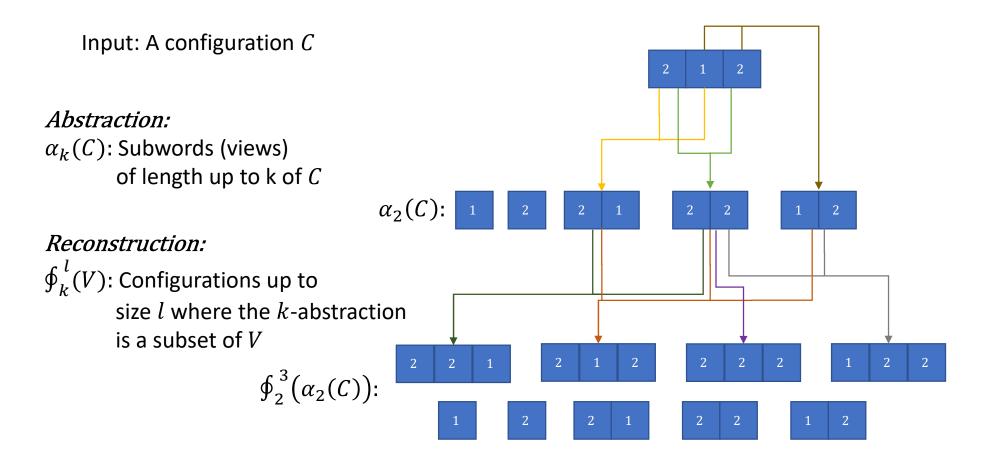
Bad configurations have a minimal bad element as subword

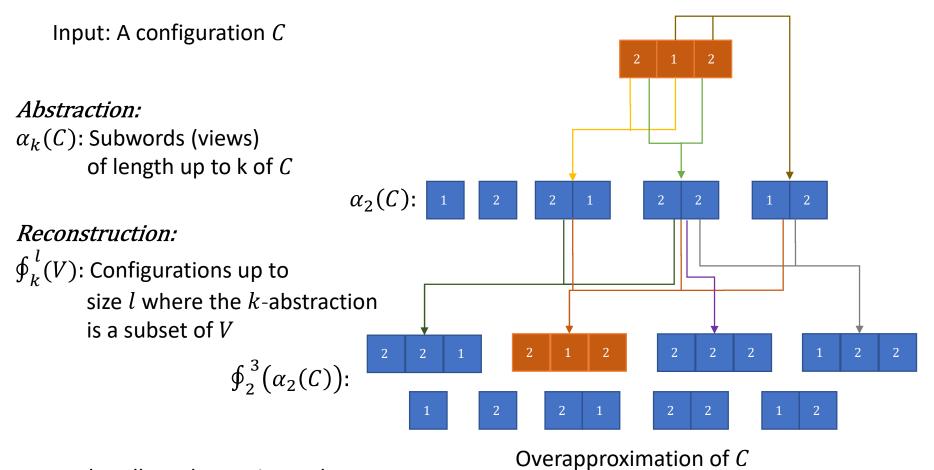


Unsafe case: Forward Reachability until we find an unsafe example

Safe case: Need to prove all instances safe! ⇒View Abstraction







We also allow abstraction to be applied to sets of configurations.

 $C = L(1^*23^+)$

 $\alpha_1 = \{1, 2, 3\}$ $\phi_1^{\infty} = L((1|2|3)^*)$

Overapproximation becomes more precise with growing k

 $\alpha_{2} = \alpha_{1} \cup \{11, 12, 13, 23, 33\}$ $\oint_{2}^{\infty} = L(1^{*}(2|\epsilon)3^{*})$

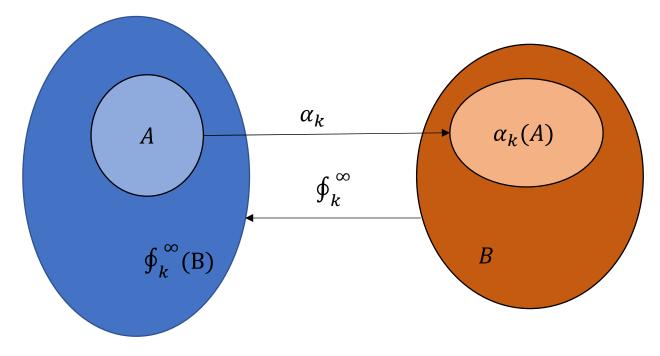
 $\alpha_3 = \alpha_2 \cup \{111, 112, 113, 123, 133, 233, 333\}$ $\oint_3^{\infty} = L(1^*(2|\epsilon)3^*)$

• • •

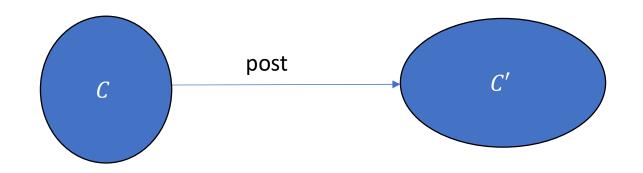
After some point, no new patterns appear

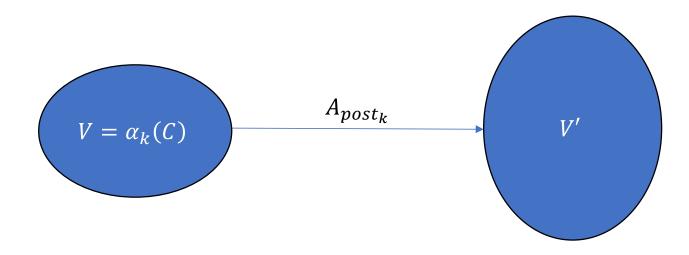
Abstraction/Reconstruction is a Galois Connection

 $\alpha_k(A) \subseteq B \leftrightarrow A \subseteq \phi_k^{\infty}(B)$

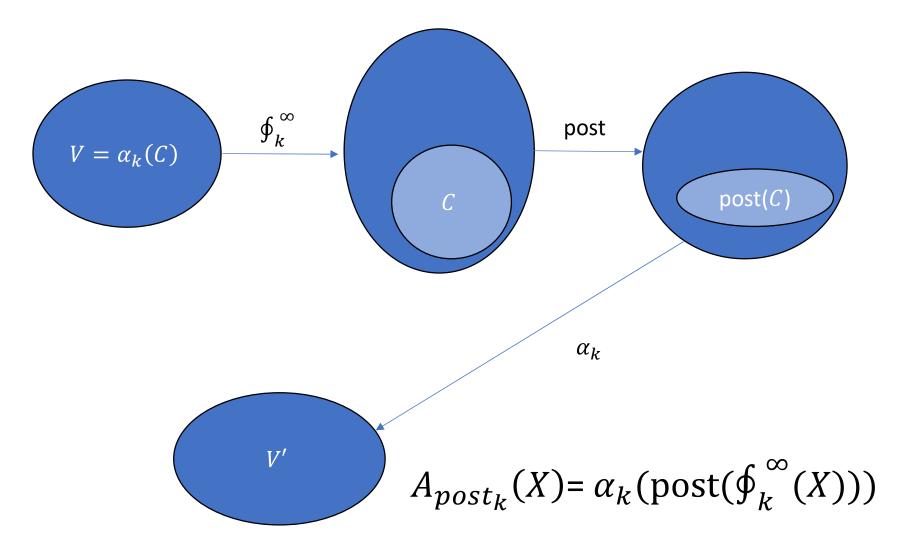


Abstract Post





Abstract Post



Abstract Post Fixpoint

$$V_k^0 = \alpha_k(Initial)$$
$$V_k^{i+1} = V_k^i \cup \alpha_k(\text{post}(\phi_k^\infty(V_k^i)))$$

 V_k : Least fixpoint

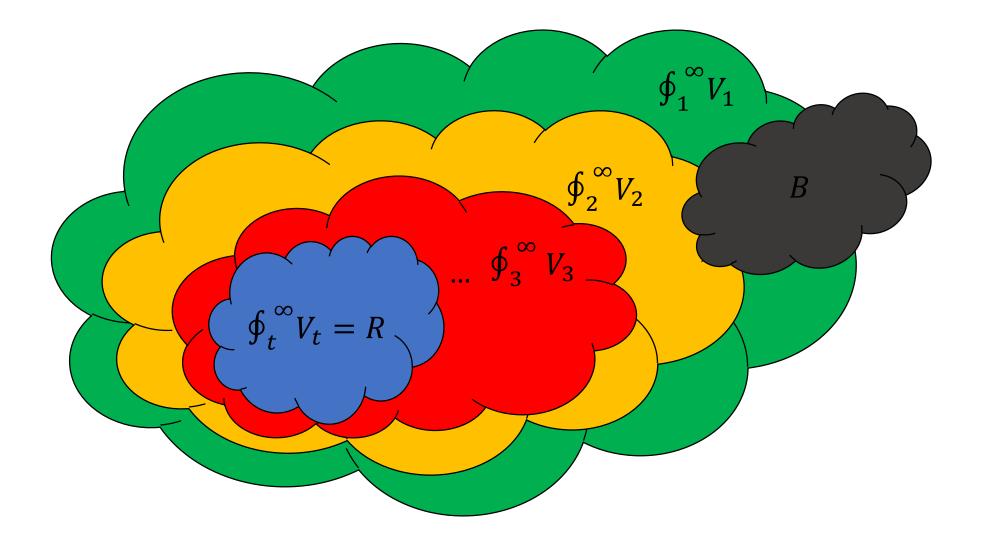
Abstract Post Fixpoint

 $\alpha_{k}(\text{post}(\oint_{k}^{\infty}(V_{k}))) \subseteq V_{k} \text{ and } \alpha_{k}(\text{Initial}) \subseteq V_{k}$ $\Rightarrow \text{post}(\oint_{k}^{\infty}(V_{k}))) \subseteq \oint_{k}^{\infty}V_{k} \text{ and Initial} \subseteq \oint_{k}^{\infty}V_{k}$ $\Rightarrow \oint_{k}^{\infty}V_{k} \text{ is a fixpoint of post that covers Initial}$ $\Rightarrow R \subseteq \oint_{k}^{\infty}V_{k}$

Galois Connection:
$$\alpha_k(A) \subseteq B \ A \subseteq \oint_k^{\infty} (B)$$

Abstract Post Fixpoint

Fixpoints have increasing precision and eventually reach *R*



Algorithm Sketch

1: for
$$k := 1$$
 to ∞ do

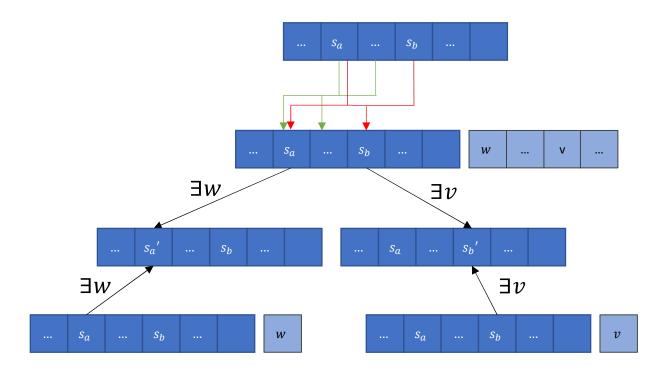
- 2: *if* $R_k \cap B \neq \emptyset$ *then return* **Unsafe**
- 3: $V_k := \mu X. \alpha_k(Initial) \cup \alpha_k(post(\phi_k^{\infty}(X)))$
- 4: $if \oint_k^{\infty} (V_k) \cap B = \emptyset$ then return Safe

Problem: $\oint_k^{\infty}(X)$ and $\oint_k^{\infty}(V_k)$ can be infinite!

Witness Processes

Reconstruction with one additional process is enough!

$$\alpha_k(\text{post}(\phi_k^{\infty}(X))) \cup X = \alpha_k(\text{post}(\phi_k^{k+1}(X))) \cup X$$



Algorithm Sketch

1: for
$$k := 1$$
 to ∞ do

- 2: *if* $R_k \cap B \neq \emptyset$ *then return* **Unsafe**
- 3: $V_k := \mu X. \alpha_k(Initial) \cup \alpha_k(post(\phi_k^{\infty}(X)))$
- 4: $if \oint_k^{\infty} (V_k) \cap B = \emptyset$ then return Safe

Problem: $\oint_k^{\infty}(X)$ and $\oint_k^{\infty}(V_k)$ can be infinite!

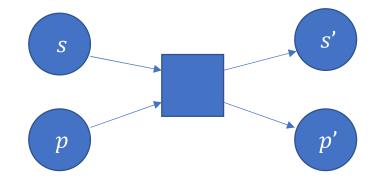
1: for
$$k := \max_{b \in B_{min}} |b|$$
 to ∞ do
2: if $\alpha_k(R_k) \cap B_{min} \neq \emptyset$ then return Unsafe
3: $V_k := \mu X. \alpha_k(Initial) \cup \alpha_k(post(\oint_k^{k+1}(X)))$
4: if $V_k \cap B_{min} = \emptyset$ then return Safe

View Abstraction for Petri Nets

What we can handle:

Rendez-vouz transitions: $s \rightarrow s', p \rightarrow p'$

Modify A_{post_k} : Use \oint_k^{k+m-1} instead of \oint_k^{k+1} (*m*: Largest arity among rendez-vouz transitions)

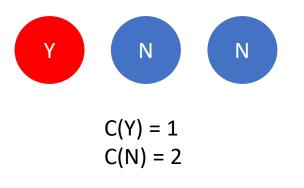


Token creation/deletion

creation/deletion \Rightarrow Population Protocols

• Finitely many agents

- Finitely many agents
- Each in one of finitely many states
- Configuration: Map states to multiplicities in the population
- States have outputs often Boolean (here: colors)



- Finitely many agents
- Each in one of finitely many states
- Configuration: Map states to multiplicities in the population
- States have outputs often Boolean (here: colors)
- In each step, pairwise interaction of two agents
- Transitions: give new states for agents, depending on their old states

$$t_{1}: Y, N \rightarrow y, n$$

$$t_{2}: Y, n \rightarrow Y, y$$

$$t_{3}: N, y \rightarrow N, n$$

$$t_{4}: n, y \rightarrow y, y$$

- Finitely many agents
- Each in one of finitely many states
- Configuration: Map states to multiplicities in the population
- States have outputs often Boolean (here: colors)
- In each step, pairwise interaction of two agents
- Transitions: give new states for agents, depending on their old states
- Implicitly assume *silent* transition when none is given

$$t_{1}: Y, N \rightarrow y, n$$

$$t_{2}: Y, n \rightarrow Y, y$$

$$t_{3}: N, y \rightarrow N, n$$

$$t_{4}: n, y \rightarrow y, y$$

- Finitely many agents
- Each in one of finitely many states
- Configuration: Map states to multiplicities in the population
- States have outputs often Boolean (here: colors)
- In each step, pairwise interaction of two agents
- Transitions: give new states for agents, depending on their old states
- Implicitly assume *silent* transition when none is given for two states
- Execution: Infinite sequence of configurations

$$t_{1}: Y, N \rightarrow y, n$$

$$t_{2}: Y, n \rightarrow Y, y$$

$$t_{3}: N, y \rightarrow N, n$$

$$t_{4}: n, y \rightarrow y, y$$

- Finitely many agents
- Each in one of finitely many states
- Configuration: Map states to multiplicities in the population
- States have outputs often Boolean (here: colors)
- In each step, pairwise interaction of two agents
- Transitions: give new states for agents, depending on their old states
- Implicitly assume *silent* transition when none is given for two states
- Execution: Infinite sequence of configurations

$$t_{1}: Y, N \rightarrow y, n$$

$$t_{2}: Y, n \rightarrow Y, y$$

$$t_{3}: N, y \rightarrow N, n$$

$$t_{4}: n, y \rightarrow y, y$$

- Finitely many agents
- Each in one of finitely many states
- Configuration: Map states to multiplicities in the population
- States have outputs often Boolean (here: colors)
- In each step, pairwise interaction of two agents
- Transitions: give new states for agents, depending on their old states
- Implicitly assume *silent* transition when none is given for two states
- Execution: Infinite sequence of configurations

C(y) = 1 C(N) = 1 C(n) = 1 $t_1: Y, N \rightarrow y, n$

$$t_{2}: Y, n \rightarrow Y, y$$

$$t_{3}: N, y \rightarrow N, n$$

$$t_{4}: n, y \rightarrow y, y$$

- Finitely many agents
- Each in one of finitely many states
- Configuration: Map states to multiplicities in the population
- States have outputs often Boolean (here: colors)
- In each step, pairwise interaction of two agents
- Transitions: give new states for agents, depending on their old states
- Implicitly assume *silent* transition when none is given for two states
- Execution: Infinite sequence of configurations
- Convergence: Eventually, all agents will have same output forever

C(N) = 1 C(n) = 2

$$t_{1}: Y, N \rightarrow y, n$$

$$t_{2}: Y, n \rightarrow Y, y$$

$$t_{3}: N, y \rightarrow N, n$$

$$t_{4}: n, y \rightarrow y, y$$

- Computing a predicate: always converge to right output for given initial configuration eventually
- Assume fairness:
 - If during the execution, C occurs infinitely often, and from C one can reach C', then C' must occur infinitely often.
- Convergence time: How long until all agents keep correct output forever?

PO2 Change Bullet point to red Philip Offtermatt; 02.05.2019

Automatic Generation of Protocols: (Blondin *et. al* 2019) Small (polynomial number of states) protocols, generated fast (also polynomial), but: not (yet) fast convergence

Humans are needed for fast protocols!

Creating (correct) population protocols is hard:

- No way of composing subfunctionalities into a bigger functionality
- No way to know for sure that a computation is done

We look for properties that are:

- Computable via View Abstraction
- Useful to help humans construct protocols

Consensus Stability

Consensus-stable set of states:

Configurations of states from the set are already in consensus and outputs cannot change

o-consensus-stable:

Set of all states with output *o* is consensus-stable

View Abstraction for Consensus Stability

Is $\{q_1, q_2, q_3, ...\}$ consensus-stable for output o?

Initial: $(q_1|q_2|q_3...)^+$ **Bad configurations:** Those that enable transitions that lead to states with output other than *o*

Bad configurations are upward closed \Rightarrow We can use View Abstraction

	Protocol	True-consensus- stable	False-consensus- stable
Flock-of- Birds	Simple Flock-of- Birds	Yes	No
	Flock-of-Birds (Tower)	Yes	No
	Flock-of-Birds (Logarithmic)	Yes	No
Majority	Simple Majority	Yes	Yes
	Average-and- conquer	Yes	Yes
	Approximate Majority	Yes	Yes

	Protocol	True-consensus- stable	False-consensus- stable
Flock-of- Birds	Simple Flock-of- Birds	Yes	No
	Flock-of-Birds (Tower)	Yes	No
	Flock-of-Birds (Logarithmic)	Yes	No
Majority	Simple Majority	Yes	Yes
	Average-and- conquer	Yes	Yes
	Approximate Majority	Yes	Yes

	Protocol	True-consensus- stable	False-consensus- stable
Flock-of- Birds	Simple Flock-of- Birds	Yes	No
	Flock-of-Birds (Tower)	Yes	No
	Flock-of-Birds (Logarithmic)	Yes	No
Majority	Simple Majority	Yes	Yes
	Average-and- conquer	Yes	Yes
	Approximate Majority	Yes	Yes

For certain predicates, (almost) all protocols exhibit the same consensus-stability properties!

If a protocol for such a predicate has different properties: Hint for unnecessary states or errors Demo

https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist

Thanks!

Questions?