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Parameterized
Systems

One Process Many interacting 
Processes

Why "parameterized"?

Parameter = interaction 
topology, number of processes
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Initial

Safety: Can we reach 
bad configurations?

∗

Do and 
intersect?



Formal Model
Configuration: word of states 𝑆ଵ 𝑆ଶ 𝑆ଷ 𝑆ସ 𝑆ହ

Transitions: 
• Local: s s’

• Global: From point of view of process 
• Existential: ᇱ ᇱᇱ

• Universal: ᇱ ᇱᇱ

: <, >, 

... 𝑆 ... ... 𝑆′

𝑞 𝑠 ... 𝑞 … 𝑞… 𝑠′ ...

...

… ... ... 𝑞 ...… 𝑠′ ...

𝑞
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Parameterized 
Verification

ଵ

Challenge: Infinitely many 
instances!

Can we prove all of them safe?

...
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Parameterized 
Verification

Bad configurations:
• Example - Mutual Exclusion: 

No two processes in the 
critical section c at the same 
time.

• ௠௜௡ : 
Upward closure of minimal 
bad configurations

…c c… …

c c

Bad configurations have a 
minimal bad element as subword
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Forward Reachability

ଵ ଵ

ଶ

ଷ

Larger instances more reachable configurations!

ଶ

ଷ

If system is unsafe, forward reachability 
(eventually) finds out!



View Abstraction

Unsafe case: Forward Reachability 
until we find an unsafe example

Safe case: Need to prove all 
instances safe! View Abstraction



View Abstraction
Input: A configuration 
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View Abstraction
Input: A configuration 
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Configurations up to
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is a subset of 
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Overapproximation of
We also allow abstraction to be
applied to sets of configurations.
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View Abstraction
∗ ା
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Overapproximation 
becomes more 
precise with 
growing 

After some 
point, no 
new patterns 
appear

…



Abstraction/Reconstruction 
is a Galois Connection
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Abstract Post
post

௣௢௦௧ೖ
௞
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Abstract Post
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Abstract Post Fixpoint
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Abstract Post Fixpoint
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Fixpoints have increasing precision and 
eventually reach 

…

Abstract Post Fixpoint



Algorithm Sketch
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Problem: ௞

ஶ
and ௞
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௞ can 

be infinite!



Witness Processes

௞ ௞

ஶ
௞ ௞

௞ାଵ

𝑠௔ … 𝑠௕ …

𝑠௔ … 𝑠௕ … 𝑤 … v

𝑠௔ … 𝑠௕ … 𝑤

𝑠௔′ … 𝑠௕ …

…

…

… 𝑠௔ … 𝑠௕′ ……

…

𝑠௔ … 𝑠௕ … 𝑣……

Reconstruction with one 
additional process is enough!



Algorithm Sketch
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View Abstraction for 
Petri Nets

What we can handle:

Rendez-vouz transitions: ᇱ

Modify ௣௢௦௧ೖ :

Use ௞

௞ା௠ିଵ
instead of ௞

௞ାଵ

( Largest arity among rendez-vouz transitions)

What we can‘t handle:

Token creation/deletion

Petri Nets without token 
creation/deletion Population Protocols



Population Protocols
• Finitely many agents



• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to 

multiplicities in the population
• States have outputs – often Boolean 

(here: colors)
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C(Y) = 1
C(N) = 2
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• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to 

multiplicities in the population
• States have outputs – often Boolean 

(here: colors)
• In each step, pairwise interaction of 

two agents
• Transitions: give new states for 

agents, depending on their old 
states

• Implicitly assume silent transition 
when none is given for two states

• Execution: Infinite sequence of 
configurations

• Convergence: Eventually, all agents 
will have same output forever
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• Computing a predicate: always converge to right output for given 
initial configuration eventually

• Assume fairness:
If during the execution, C occurs infinitely often, and from C one
can reach C', then C' must occur infinitely often.

• Convergence time: 
How long until all agents keep correct output forever?

Population Protocols
PO2
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Automatic Generation of Protocols: (Blondin et. al 2019)
Small (polynomial number of states) protocols, generated 
fast (also polynomial), but: not (yet) fast convergence

Humans are needed for fast protocols!

Population Protocols



Creating (correct) population protocols is hard:
• No way of composing subfunctionalities

into a bigger functionality
• No way to know for sure that a 

computation is done

We look for properties that are:
• Computable via View Abstraction
• Useful to help humans construct protocols

Population Protocols



Consensus Stability
Consensus-stable set of states: 
Configurations of states from the set are already in 
consensus and outputs cannot change

-consensus-stable:
Set of all states with output is consensus-stable



View Abstraction for 
Consensus Stability

Is ଵ ଶ ଷ consensus-stable for output ?

Initial: ଵ ଶ ଷ
ା

Bad configurations: Those that enable transitions that lead to states
with output other than

Bad configurations are upward closed We can use View Abstraction



Is Consensus Stability 
Useful?

Protocol True-consensus-
stable

False-consensus-
stable

Simple Flock-of-
Birds

Yes No

Flock-of-Birds 
(Tower)

Yes No

Flock-of-Birds 
(Logarithmic)

Yes No

Simple Majority Yes Yes

Average-and-
conquer

Yes Yes

Approximate 
Majority

Yes Yes

Flock-of-
Birds

Majority
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Is Consensus Stability 
Useful?

For certain predicates, (almost) all protocols exhibit the 
same consensus-stability properties!

If a protocol for such a predicate has different properties:
Hint for unnecessary states or errors



Demo
https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist



Questions?


