
Approaching Safety for
Parameterized Systems

via View Abstraction
Philip Offtermatt

Parameterized
Systems

One Process Many interacting
Processes

Why "parameterized"?

Parameter = interaction
topology, number of processes

Parameterized
Systems

s

s

s'
s'

post post

Initial

Safety: Can we reach
bad configurations?

∗

Do and
intersect?

Formal Model
Configuration: word of states 𝑆ଵ 𝑆ଶ 𝑆ଷ 𝑆ସ 𝑆ହ

Transitions:
• Local: s s’

• Global: From point of view of process
• Existential: ᇱ ᇱᇱ

• Universal: ᇱ ᇱᇱ

: <, >,

... 𝑆 𝑆′

𝑞 𝑠 ... 𝑞 … 𝑞… 𝑠′ ...

...

… 𝑞 ...… 𝑠′ ...

𝑞

𝑞 𝑠

i i

i i

Parameterized
Verification

ଵ

Challenge: Infinitely many
instances!

Can we prove all of them safe?

...

i

ii

ii iଷ

ଶ

Parameterized
Verification

Bad configurations:
• Example - Mutual Exclusion:

No two processes in the
critical section c at the same
time.

• ௠௜௡ :
Upward closure of minimal
bad configurations

…c c… …

c c

Bad configurations have a
minimal bad element as subword

R_1R_1

Forward Reachability

ଵ ଵ

ଶ

ଷ

Larger instances more reachable configurations!

ଶ

ଷ

If system is unsafe, forward reachability
(eventually) finds out!

View Abstraction

Unsafe case: Forward Reachability
until we find an unsafe example

Safe case: Need to prove all
instances safe! View Abstraction

View Abstraction
Input: A configuration

2 1 2

ଶ 2 1 2 2 1 21 2

௞ Subwords (views)
of length up to k of

View Abstraction
Input: A configuration

2 1 2

ଶ

௞

௟
Configurations up to
size where the -abstraction
is a subset of

2 1 2 2 1 2

2 12 2 21 2 22 1 22

1 2

ଶ

ଷ
ଶ

2 1 2 2 1 21 2

௞ Subwords (views)
of length up to k of

View Abstraction
Input: A configuration

௞ Subwords (views)
of length up to k of

2 1 2

ଶ

௞

௟
Configurations up to
size where the -abstraction
is a subset of

2 1 2 2 1 2

2 12 2 21 2 22 1 22

1 2

Overapproximation of
We also allow abstraction to be
applied to sets of configurations.

2 1 2 2 1 21 2

ଶ

ଷ
ଶ

View Abstraction
∗ ା

ଵ

ଵ

ஶ ∗

ଶ ଵ

ଶ

ஶ ∗ ∗

ଷ ଶ

ଷ

ஶ ∗ ∗

Overapproximation
becomes more
precise with
growing

After some
point, no
new patterns
appear

…

Abstraction/Reconstruction
is a Galois Connection

௞ ௞

ஶ

௞

௞

ஶ

௞

ஶ

௞

Abstract Post
post

௣௢௦௧ೖ
௞

௞

Abstract Post

௞

ஶ post

௞

ೖ
=

post()

Abstract Post Fixpoint

௞ ௞

ஶ
௞ ௞ ௞ ௞

௞

ஶ
௞ ௞

ஶ
௞ ௞

ஶ
௞

௞

ஶ
௞

௞

ஶ
௞

Abstract Post Fixpoint

௞ ௞

ஶ

Fixpoints have increasing precision and
eventually reach

…

Abstract Post Fixpoint

Algorithm Sketch

௞

௞ ௞ ௞ ௞

ஶ

௞

ஶ
௞

Problem: ௞

ஶ
and ௞

ஶ
௞ can

be infinite!

Witness Processes

௞ ௞

ஶ
௞ ௞

௞ାଵ

𝑠௔ … 𝑠௕ …

𝑠௔ … 𝑠௕ … 𝑤 … v

𝑠௔ … 𝑠௕ … 𝑤

𝑠௔′ … 𝑠௕ …

…

…

… 𝑠௔ … 𝑠௕′ ……

…

𝑠௔ … 𝑠௕ … 𝑣……

Reconstruction with one
additional process is enough!

Algorithm Sketch

௞

௞ ௞ ௞ ௞

ஶ

௞

ஶ
௞

Problem: ௞

ஶ
and ௞

ஶ
௞ can

be infinite!

௕∈஻೘೔೙

௞ ௞ ௠௜௡

௞ ௞ ௞ ௞

௞ାଵ

௞ ௠௜௡

View Abstraction for
Petri Nets

What we can handle:

Rendez-vouz transitions: ᇱ

Modify ௣௢௦௧ೖ :

Use ௞

௞ା௠ିଵ
instead of ௞

௞ାଵ

(Largest arity among rendez-vouz transitions)

What we can‘t handle:

Token creation/deletion

Petri Nets without token
creation/deletion Population Protocols

Population Protocols
• Finitely many agents

• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to

multiplicities in the population
• States have outputs – often Boolean

(here: colors)

Y N N

C(Y) = 1
C(N) = 2

Population Protocols

• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to

multiplicities in the population
• States have outputs – often Boolean

(here: colors)
• In each step, pairwise interaction of

two agents
• Transitions: give new states for

agents, depending on their old
states

Y N N

C(Y) = 1
C(N) = 2

ଵ

ଶ

ଷ

ସ

Population Protocols

• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to

multiplicities in the population
• States have outputs – often Boolean

(here: colors)
• In each step, pairwise interaction of

two agents
• Transitions: give new states for

agents, depending on their old
states

• Implicitly assume silent transition
when none is given

Y N N

C(Y) = 1
C(N) = 2

ଵ

ଶ

ଷ

ସ

Population Protocols

• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to

multiplicities in the population
• States have outputs – often Boolean

(here: colors)
• In each step, pairwise interaction of

two agents
• Transitions: give new states for

agents, depending on their old
states

• Implicitly assume silent transition
when none is given for two states

• Execution: Infinite sequence of
configurations

Y N N

C(Y) = 1
C(N) = 2

ଵ

ଶ

ଷ

ସ

Population Protocols

• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to

multiplicities in the population
• States have outputs – often Boolean

(here: colors)
• In each step, pairwise interaction of

two agents
• Transitions: give new states for

agents, depending on their old
states

• Implicitly assume silent transition
when none is given for two states

• Execution: Infinite sequence of
configurations

Y N N

C(Y) = 1
C(N) = 2

ଵ

ଶ

ଷ

ସ

Population Protocols

• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to

multiplicities in the population
• States have outputs – often Boolean

(here: colors)
• In each step, pairwise interaction of

two agents
• Transitions: give new states for

agents, depending on their old
states

• Implicitly assume silent transition
when none is given for two states

• Execution: Infinite sequence of
configurations

y n N

C(y) = 1
C(N) = 1
C(n) = 1

ଵ

ଶ

ଷ

ସ

Population Protocols

• Finitely many agents
• Each in one of finitely many states
• Configuration: Map states to

multiplicities in the population
• States have outputs – often Boolean

(here: colors)
• In each step, pairwise interaction of

two agents
• Transitions: give new states for

agents, depending on their old
states

• Implicitly assume silent transition
when none is given for two states

• Execution: Infinite sequence of
configurations

• Convergence: Eventually, all agents
will have same output forever

n n N

C(N) = 1
C(n) = 2

ଵ

ଶ

ଷ

ସ

Population Protocols

• Computing a predicate: always converge to right output for given
initial configuration eventually

• Assume fairness:
If during the execution, C occurs infinitely often, and from C one
can reach C', then C' must occur infinitely often.

• Convergence time:
How long until all agents keep correct output forever?

Population Protocols
PO2

Slide 32

PO2 Change Bullet point to red
Philip Offtermatt; 02.05.2019

Automatic Generation of Protocols: (Blondin et. al 2019)
Small (polynomial number of states) protocols, generated
fast (also polynomial), but: not (yet) fast convergence

Humans are needed for fast protocols!

Population Protocols

Creating (correct) population protocols is hard:
• No way of composing subfunctionalities

into a bigger functionality
• No way to know for sure that a

computation is done

We look for properties that are:
• Computable via View Abstraction
• Useful to help humans construct protocols

Population Protocols

Consensus Stability
Consensus-stable set of states:
Configurations of states from the set are already in
consensus and outputs cannot change

-consensus-stable:
Set of all states with output is consensus-stable

View Abstraction for
Consensus Stability

Is ଵ ଶ ଷ consensus-stable for output ?

Initial: ଵ ଶ ଷ
ା

Bad configurations: Those that enable transitions that lead to states
with output other than

Bad configurations are upward closed We can use View Abstraction

Is Consensus Stability
Useful?

Protocol True-consensus-
stable

False-consensus-
stable

Simple Flock-of-
Birds

Yes No

Flock-of-Birds
(Tower)

Yes No

Flock-of-Birds
(Logarithmic)

Yes No

Simple Majority Yes Yes

Average-and-
conquer

Yes Yes

Approximate
Majority

Yes Yes

Flock-of-
Birds

Majority

Is Consensus Stability
Useful?

Protocol True-consensus-
stable

False-consensus-
stable

Simple Flock-of-
Birds

Yes No

Flock-of-Birds
(Tower)

Yes No

Flock-of-Birds
(Logarithmic)

Yes No

Simple Majority Yes Yes

Average-and-
conquer

Yes Yes

Approximate
Majority

Yes Yes

Flock-of-
Birds

Majority

Is Consensus Stability
Useful?

Protocol True-consensus-
stable

False-consensus-
stable

Simple Flock-of-
Birds

Yes No

Flock-of-Birds
(Tower)

Yes No

Flock-of-Birds
(Logarithmic)

Yes No

Simple Majority Yes Yes

Average-and-
conquer

Yes Yes

Approximate
Majority

Yes Yes

Flock-of-
Birds

Majority

Is Consensus Stability
Useful?

For certain predicates, (almost) all protocols exhibit the
same consensus-stability properties!

If a protocol for such a predicate has different properties:
Hint for unnecessary states or errors

Demo
https://gitlab.lrz.de/philip_offtermatt/viewabstraction-protocolassist

Questions?

