Approaching Safety for
Parameterized Systems

via View Abstraction

Philip Offtermatt

Parameterized
Systems

— 4
»

Many interacting
Processes

One Process

Why "parameterized"?

Parameter = interaction
topology, number of processes

Parameterized
Systems

Q (o0
GG,
O

post

@“”" /‘
s' .
'll‘ \\A: :’

Q‘ ‘—\‘

Safety: Can we reach
bad configurations?

post™
Initial >

DoR and B
intersect?

Formal Model

Configuration: word of states =N 5. s, S, S, S

Transitions:
e |local:s—5¢s

—_»

* Global: From point of view of process i
« Existential: If 3j o i: c[j] = qthens — s’elses - s"

1 1
——_>

* Universal: If Vj o i: c[j] = qthens - s'elses — s"

i i
——_’

O:<, >) ¢

Parameterized
Verification

[Initial, }

Can we prove all of them safe? [Initial, } _

[Initial; J

Challenge: Infinitely many
instances!

Parameterized
Verification

Bad configurations:

C C
Example - Mutual Exclusion: _

No two processes in the
critical section c at the same

time.
B = (T Bmin): -

Upward closure of minimal

Bad configurations have a
bad configurations &

minimal bad element as subword

Forward Reachability

Initial,

Initials Larger instances = more reachable configurations!

If system is unsafe, forward reachability
(eventually) finds out!

View Abstraction

Unsafe case: Forward Reachability
until we find an unsafe example

Safe case: Need to prove all
instances safe! =View Abstraction

View Abstraction

Input: A configuration C

Abstraction:
a; (C): Subwords (views)
of length up to k of C

v
«.co: 51 K N

View Abstraction

Input: A configuration C

Abstraction:
a; (C): Subwords (views)
of length up to k of C

«(©: [[T
Reconstruction:

fﬁkl(V)' Configurations up to
size [where the k-abstraction
is a subset of I/

View Abstraction

Input: A configuration C

Abstraction:
a; (C): Subwords (views)
of length up to k of C

©
Reconstruction: L
gﬁkl(V): Configurations up to

size [where the k-abstraction

isasubsetofvsﬁ3
C)):
e

Overapproximation of C

\ 4

2 2 2

We also allow abstraction to be
applied to sets of configurations.

Overapproximation
becomes more
precise with
growing k

View Abstraction

C=L(1*23%)

a = {1, 2,3}
$. = L((11213))

a, = a, U{11,12,13,23,33}
$, =L(1*(2l€)3")

as = a; U{111,112,113,123,133,233, 333}
$, =L(1"(2l)3")

After some
point, no
new patterns
appear

Abstraction/Reconstruction
IS @ Galois Connection

ap(A) €SB o AC fﬁkoo(B)

Abstract Post

Abstract Post

o ﬁkoo |
0 Apost, ()= e (post($,.” (X))

post

Abstract Post Fixpoint

VY = ay(Initial)
Vett = Vg U ap(post(P, (Vi)

V. : Least fixpoint

Abstract Post Fixpoint

ak(post(gﬁkoo (V) €V, and aj (Initial) SV},
= post(dSROO(Vk))) C gﬁkooVk and Initial < gﬁkooVk
=X koo V. is a fixpoint of post that covers Initial

=> R C ﬁkoovk

Galois Connection: a;,(A) € B A C gﬁkoo (B)

Abstract Post Fixpoint

Fixpoints have increasing precision and
eventually reach R

Algorithm Sketch

: fork := 1toxdo
if R, N B+ Qthenreturn Unsafe

1
2

3: V= pX.ap(Initial) U a(post(, (X))
4 if gﬁkoo(Vk) N B = @ then return Safe

Problem: gﬁkoo(X) and gﬁkoo(Vk) can
be infinite!

Withess Processes

Reconstruction with one
additional process is enough!

ay (post($,” (X)) U X = a (post($, ' (X)) U X

Algorithm Sketch

: fork := 1toxdo
if R, N B+ @ thenreturn Unsafe

1
2

3: V= pX.ap(Initial) U a(post(, (X))
4 if gﬁkoo(Vk) N B = @ then return Safe

Problem: gﬁkoo(X) and gﬁkoo(Vk) can

be infinite!
: for k := max |b| tooodo
bEBmin
if a,(R;) N By # @ then return Unsafe

Vie= uX.ay(Initial) U a(post($, (X))
if V, N B, = O@thenreturn Safe

sl S

View Abstraction for
Petri Nets

Rendez-vouz transitions: s — S’,p - p' H

Modify Apost, : Q
k+m— K
Use gﬁk mel instead of § i

k
(m: Largest arity among rendez-vouz transitions)

What we can‘t handle:

Token creation/deletion

Petri Nets without token
creation/deletion = Population Protocols

* Finitely many agents

Population Protocols

Finitely many agents

Population Protocols

Configuration: Map states to

multiplicities in the population c(Y)=1
States have outputs — often Boolean C(N) =2
(here: colors)

Population Protocols

Finitely many agents

Each in one of finitely many states
Configuration: Map states to
multiplicities in the population
States have outputs — often Boolean
(here: colors)

In each step, pairwise interaction of
two agents

Transitions: give new states for
agents, depending on their old
states

c(Y)=1
C(N) =2

ti:Y,N > yn
t,:Y,n->Y,y
t3:N,y > N,n
t4:Tl,y Y,y

Population Protocols

Finitely many agents

Each in one of finitely many states
Configuration: Map states to
multiplicities in the population
States have outputs — often Boolean
(here: colors)

In each step, pairwise interaction of
two agents

Transitions: give new states for
agents, depending on their old
states

Implicitly assume silent transition
when none is given

c(Y)=1
C(N) =2

ti:Y,N > yn
t,:Y,n->Y,y
t3:N,y > N,n
t4:Tl,y Y,y

Population Protocols

Finitely many agents

Each in one of finitely many states
Configuration: Map states to
multiplicities in the population
States have outputs — often Boolean
(here: colors)

In each step, pairwise interaction of
two agents

Transitions: give new states for
agents, depending on their old
states

Implicitly assume silent transition
when none is given for two states
Execution: Infinite sequence of
configurations

c(Y)=1
C(N) =2

t1:Y,N->yn
t,:Y,n->Y,y
t3:N,y > N,n
t4:Tl,y =Wy

Population Protocols

Finitely many agents

Each in one of finitely many states
Configuration: Map states to
multiplicities in the population
States have outputs — often Boolean
(here: colors)

In each step, pairwise interaction of
two agents

Transitions: give new states for
agents, depending on their old
states

Implicitly assume silent transition
when none is given for two states
Execution: Infinite sequence of
configurations

c(Y)=1
C(N) =2

t1:Y,N->yn
t,:Y,n->Y,y
t3:N,y > N,n
t4:Tl,y =Wy

Population Protocols

Finitely many agents

Each in one of finitely many states
Configuration: Map states to
multiplicities in the population
States have outputs — often Boolean
(here: colors)

In each step, pairwise interaction of
two agents

Transitions: give new states for
agents, depending on their old
states

Implicitly assume silent transition
when none is given for two states
Execution: Infinite sequence of
configurations

Cly)=1
C(N)=1
C(n)=1

t1:Y,N->yn
t,:Y,n->Y,y
t3:N,y > N,n
t4:Tl,y =Wy

Population Protocols

Finitely many agents

Each in one of finitely many states
Configuration: Map states to
multiplicities in the population
States have outputs — often Boolean
(here: colors)

In each step, pairwise interaction of
two agents

Transitions: give new states for
agents, depending on their old
states

Implicitly assume silent transition
when none is given for two states
Execution: Infinite sequence of
configurations

Convergence: Eventually, all agents
will have same output forever

C(N)=1
C(n) =2

t1:Y,N->yn
t,:Y,n->Y,y
t3:N,y > N,n
t4:Tl,y =Wy

PO2

Population Protocols

 Computing a predicate: always converge to right output for given
initial configuration eventually

e Assume fairness:
If during the execution, C occurs infinitely often, and from C one
can reach C', then C' must occur infinitely often.

* Convergence time:
How long until all agents keep correct output forever?

Slide 32

PO2 Change Bullet point to red
Philip Offtermatt; 02.05.2019

Population Protocols

Automatic Generation of Protocols: (Blondin et. al 2019)
Small (polynomial number of states) protocols, generated
fast (also polynomial), but: not (yet) fast convergence

Humans are needed for fast protocols!

Population Protocols

Creating (correct) population protocols is hard:

* No way of composing subfunctionalities
into a bigger functionality

* No way to know for sure that a
computation is done

We look for properties that are:
 Computable via View Abstraction
* Useful to help humans construct protocols

Consensus Stability

Consensus-stable set of states:
Configurations of states from the set are already in
consensus and outputs cannot change

0-consensus-stable:
Set of all states with output o is consensus-stable

View Abstraction for
Consensus Stability

Is {q1, 9>, q3, .-- } consensus-stable for output 0?

Initial: (q11q31q3 ...)"
Bad configurations: Those that enable transitions that lead to states

with output other than o

Bad configurations are upward closed = We can use View Abstraction

s Consensus Stability
Useful?

Protocol True-consensus- False-consensus-
stable stable

_—

Simple Flock-of- Yes No
Birds
Flock-of- _J Flock-of-Birds Yes No
Birds (Tower)
Flock-of-Birds Yes No
- (Logarithmic)
Simple Majority Yes Yes
Majority — Average-and- Yes Yes
conquer
Approximate Yes Yes

___ Majority

s Consensus Stability
Useful?

Protocol True-consensus- False-consensus-
stable stable

Slmple Flock-of-
Birds
Flock-of- Flock-of-Birds
—_—
Birds (Tower)
- (Logarithmic)
Yes Yes

Simple Majority

Majority — Average-and- Yes Yes
conquer
Approximate Yes Yes

___ Majority

s Consensus Stability
Useful?

Protocol True-consensus- False-consensus-
stable stable

—

Simple Flock-of- Yes No
Birds
Flock-of- | Flock-of-Birds Yes No
Birds (Tower)
Flock-of-Birds Yes No

- (Logarithmic)

conquer
Approximate
__ Majority

s Consensus Stability
Useful?

For certain predicates, (almost) all protocols exhibit the
same consensus-stability properties!

If a protocol for such a predicate has different properties:
Hint for unnecessary states or errors

Thanks!

Questions?

