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[
2021/10/11 10:15:04 (7)

]

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/


Efficient verification

through approximations

Philip Offtermatt

Based on collaborations with:
Michael Blondin, Tim Leys, Christoph Haase

Filip Mazowiecki, Guillermo Pérez
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Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Overapproximations help proving safety

. . . but what about proving unsafety?

initial

Bad states

Inspiration from pathfinding:

Overapproximations as heuristics

bad
unreachable

is bad
closer to badfurther from bad

Approximations guide us to avoid generating too many states
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What models to verify?
Petri nets (and related models)!
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Why Petri nets?

Business Processes Distributed Systems

Program Synthesis Chemical Reactions
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My work

TACAS ’21

Petri net reachability checker

LICS ’21

Continuous One-Counter Automata
Globally-Guarded Standard Parametric

OCA NP-complete PSPACE-complete PSPACENEXP hard
COCA ∈ NC2 ∈ P NP-complete
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Results so far
Approximation-guided reachability vs state-of-the-art

176 Petri nets
Goal: Check safety
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