
Efficient verification

through approximations

Philip Offtermatt

Based on collaborations with:
Michael Blondin, Tim Leys, Christoph Haase

Filip Mazowiecki, Guillermo Pérez

[
2021/10/11 10:15:04 (7)

]

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/


Efficient verification

through approximations

Philip Offtermatt

Based on collaborations with:
Michael Blondin, Tim Leys, Christoph Haase

Filip Mazowiecki, Guillermo Pérez

[
2021/10/11 10:15:04 (7)

]
Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/


Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)

initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Why we care about overapproximations
Goal: Verify no bad state is reachable!

OverReach(initial)

Compute an Overapproximation instead!

Reach(initial)
initial

Bad states

What if Reach(initial) is
intractable?

OverReach safe ⇒ Reach safe

Philip Offtermatt Efficient verification through approximations 1 / 7



Overapproximations help proving safety

. . . but what about proving unsafety?

initial

Bad states

Inspiration from pathfinding:

Overapproximations as heuristics

bad
unreachable

is bad
closer to badfurther from bad

Approximations guide us to avoid generating too many states

Philip Offtermatt Efficient verification through approximations 2 / 7



Overapproximations help proving safety
. . . but what about proving unsafety?

initial

Bad states

Inspiration from pathfinding:

Overapproximations as heuristics

bad
unreachable

is bad
closer to badfurther from bad

Approximations guide us to avoid generating too many states

Philip Offtermatt Efficient verification through approximations 2 / 7



Overapproximations help proving safety
. . . but what about proving unsafety?

initial

Bad states

Inspiration from pathfinding:

Overapproximations as heuristics

bad
unreachable

is bad
closer to badfurther from bad

Approximations guide us to avoid generating too many states

Philip Offtermatt Efficient verification through approximations 2 / 7



Overapproximations help proving safety
. . . but what about proving unsafety?

initial

Bad states

Inspiration from pathfinding:

Overapproximations as heuristics

bad
unreachable

is bad
closer to badfurther from bad

Approximations guide us to avoid generating too many states

Philip Offtermatt Efficient verification through approximations 2 / 7



Overapproximations help proving safety
. . . but what about proving unsafety?

initial

Bad states

Inspiration from pathfinding:

Overapproximations as heuristics

bad
unreachable

is bad
closer to badfurther from bad

Approximations guide us to avoid generating too many states

Philip Offtermatt Efficient verification through approximations 2 / 7



Overapproximations help proving safety
. . . but what about proving unsafety?

initial

Bad states

Inspiration from pathfinding:

Overapproximations as heuristics

bad
unreachable

is bad
closer to badfurther from bad

Approximations guide us to avoid generating too many states

Philip Offtermatt Efficient verification through approximations 2 / 7



Overapproximations help proving safety
. . . but what about proving unsafety?

initial

Bad states

Inspiration from pathfinding:

Overapproximations as heuristics

bad
unreachable

is bad
closer to badfurther from bad

Approximations guide us to avoid generating too many states

Philip Offtermatt Efficient verification through approximations 2 / 7



What models to verify?
Petri nets (and related models)!

split

morph

merge

split

morph

split

merge

Philip Offtermatt Efficient verification through approximations 3 / 7



What models to verify?
Petri nets (and related models)!

split

morph

merge

split

morph

split

merge

Philip Offtermatt Efficient verification through approximations 3 / 7



What models to verify?
Petri nets (and related models)!

split

morph

merge

split

morph

split

merge

Philip Offtermatt Efficient verification through approximations 3 / 7



What models to verify?
Petri nets (and related models)!

split

morph

merge

split

morph

split

merge

Philip Offtermatt Efficient verification through approximations 3 / 7



What models to verify?
Petri nets (and related models)!

split

morph

merge

split

morph

split

merge

Philip Offtermatt Efficient verification through approximations 3 / 7



What models to verify?
Petri nets (and related models)!

split

morph

merge

split

morph

split

merge

Philip Offtermatt Efficient verification through approximations 3 / 7



What models to verify?
Petri nets (and related models)!

split

morph

merge

split

morph

split

merge

Philip Offtermatt Efficient verification through approximations 3 / 7



Why Petri nets?

Business Processes Distributed Systems

Program Synthesis Chemical Reactions

Philip Offtermatt Efficient verification through approximations 4 / 7



Why Petri nets?

Business Processes

Distributed Systems

Program Synthesis Chemical Reactions

Philip Offtermatt Efficient verification through approximations 4 / 7



Why Petri nets?

Business Processes Distributed Systems

Program Synthesis Chemical Reactions

Philip Offtermatt Efficient verification through approximations 4 / 7



Why Petri nets?

Business Processes Distributed Systems

Program Synthesis

Chemical Reactions

Philip Offtermatt Efficient verification through approximations 4 / 7



Why Petri nets?

Business Processes Distributed Systems

Program Synthesis Chemical Reactions

Philip Offtermatt Efficient verification through approximations 4 / 7



My work

TACAS ’21

Petri net reachability checker

LICS ’21

Continuous One-Counter Automata
Globally-Guarded Standard Parametric

OCA NP-complete PSPACE-complete PSPACENEXP hard
COCA ∈ NC2 ∈ P NP-complete

q

[0, 0]

r1

[4, 5)

r2

[2, 3]

p

(−∞, 10)+5

+3

−1

+1

−1

Current projects

Verifying soundness of workflow nets

Approximations for Branching VASS

Philip Offtermatt Efficient verification through approximations 5 / 7



My work
TACAS ’21

Petri net reachability checker

LICS ’21

Continuous One-Counter Automata
Globally-Guarded Standard Parametric

OCA NP-complete PSPACE-complete PSPACENEXP hard
COCA ∈ NC2 ∈ P NP-complete

q

[0, 0]

r1

[4, 5)

r2

[2, 3]

p

(−∞, 10)+5

+3

−1

+1

−1

Current projects

Verifying soundness of workflow nets

Approximations for Branching VASS

Philip Offtermatt Efficient verification through approximations 5 / 7



My work
TACAS ’21

Petri net reachability checker

LICS ’21

Continuous One-Counter Automata
Globally-Guarded Standard Parametric

OCA NP-complete PSPACE-complete PSPACENEXP hard
COCA ∈ NC2 ∈ P NP-complete

q

[0, 0]

r1

[4, 5)

r2

[2, 3]

p

(−∞, 10)+5

+3

−1

+1

−1

Current projects

Verifying soundness of workflow nets

Approximations for Branching VASS

Philip Offtermatt Efficient verification through approximations 5 / 7



My work
TACAS ’21

Petri net reachability checker

LICS ’21

Continuous One-Counter Automata
Globally-Guarded Standard Parametric

OCA NP-complete PSPACE-complete PSPACENEXP hard
COCA ∈ NC2 ∈ P NP-complete

q

[0, 0]

r1

[4, 5)

r2

[2, 3]

p

(−∞, 10)+5

+3

−1

+1

−1

Current projects

Verifying soundness of workflow nets

Approximations for Branching VASS

Philip Offtermatt Efficient verification through approximations 5 / 7



My work
TACAS ’21

Petri net reachability checker

LICS ’21

Continuous One-Counter Automata
Globally-Guarded Standard Parametric

OCA NP-complete PSPACE-complete PSPACENEXP hard
COCA ∈ NC2 ∈ P NP-complete

q

[0, 0]

r1

[4, 5)

r2

[2, 3]

p

(−∞, 10)+5

+3

−1

+1

−1

Current projects

Verifying soundness of workflow nets

Approximations for Branching VASS

Philip Offtermatt Efficient verification through approximations 5 / 7



My work
TACAS ’21

Petri net reachability checker

LICS ’21

Continuous One-Counter Automata
Globally-Guarded Standard Parametric

OCA NP-complete PSPACE-complete PSPACENEXP hard
COCA ∈ NC2 ∈ P NP-complete

q

[0, 0]

r1

[4, 5)

r2

[2, 3]

p

(−∞, 10)+5

+3

−1

+1

−1

Current projects

Verifying soundness of workflow nets

Approximations for Branching VASS

Philip Offtermatt Efficient verification through approximations 5 / 7



My work
TACAS ’21

Petri net reachability checker

LICS ’21

Continuous One-Counter Automata
Globally-Guarded Standard Parametric

OCA NP-complete PSPACE-complete PSPACENEXP hard
COCA ∈ NC2 ∈ P NP-complete

q

[0, 0]

r1

[4, 5)

r2

[2, 3]

p

(−∞, 10)+5

+3

−1

+1

−1

Current projects

Verifying soundness of workflow nets

Approximations for Branching VASS

Philip Offtermatt Efficient verification through approximations 5 / 7



Results so far
Approximation-guided reachability vs state-of-the-art

176 Petri nets
Goal: Check safety

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

time t (seconds)

instances
decided in
≤ t seconds

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

time t (seconds)

instances
decided in
≤ t seconds state-of-the-art [TOPLAS’14]

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

160/176

time t (seconds)

instances
decided in
≤ t seconds

our approach [TACAS’21]

state-of-the-art [TOPLAS’14]

Approximation-guided reachability delivers promising results!

Philip Offtermatt Efficient verification through approximations 6 / 7



Results so far
Approximation-guided reachability vs state-of-the-art

176 Petri nets
Goal: Check safety

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

time t (seconds)

instances
decided in
≤ t seconds

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

time t (seconds)

instances
decided in
≤ t seconds state-of-the-art [TOPLAS’14]

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

160/176

time t (seconds)

instances
decided in
≤ t seconds

our approach [TACAS’21]

state-of-the-art [TOPLAS’14]

Approximation-guided reachability delivers promising results!

Philip Offtermatt Efficient verification through approximations 6 / 7



Results so far
Approximation-guided reachability vs state-of-the-art

176 Petri nets
Goal: Check safety

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

time t (seconds)

instances
decided in
≤ t seconds

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

time t (seconds)

instances
decided in
≤ t seconds state-of-the-art [TOPLAS’14]

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

160/176

time t (seconds)

instances
decided in
≤ t seconds

our approach [TACAS’21]

state-of-the-art [TOPLAS’14]

Approximation-guided reachability delivers promising results!

Philip Offtermatt Efficient verification through approximations 6 / 7



Results so far
Approximation-guided reachability vs state-of-the-art

176 Petri nets
Goal: Check safety

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

time t (seconds)

instances
decided in
≤ t seconds

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

time t (seconds)

instances
decided in
≤ t seconds state-of-the-art [TOPLAS’14]

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

160/176

time t (seconds)

instances
decided in
≤ t seconds

our approach [TACAS’21]

state-of-the-art [TOPLAS’14]

Approximation-guided reachability delivers promising results!

Philip Offtermatt Efficient verification through approximations 6 / 7



Results so far
Approximation-guided reachability vs state-of-the-art

176 Petri nets
Goal: Check safety

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

time t (seconds)

instances
decided in
≤ t seconds

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

time t (seconds)

instances
decided in
≤ t seconds state-of-the-art [TOPLAS’14]

0.1 0.5 1.5 5 15 60
0

20

40

60

80

100

120

140

160

100/176

160/176

time t (seconds)

instances
decided in
≤ t seconds

our approach [TACAS’21]

state-of-the-art [TOPLAS’14]

Approximation-guided reachability delivers promising results!

Philip Offtermatt Efficient verification through approximations 6 / 7



Philip Offtermatt Efficient verification through approximations 7 / 7


